scispace - formally typeset
Search or ask a question
Institution

Xi'an Jiaotong University

EducationXi'an, China
About: Xi'an Jiaotong University is a education organization based out in Xi'an, China. It is known for research contribution in the topics: Heat transfer & Dielectric. The organization has 85440 authors who have published 99682 publications receiving 1579683 citations. The organization is also known as: '''Xi'an Jiaotong University''' & Xi'an Jiao Tong University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the inner product operation of wavelet transform (WT) is verified by simulation and field experiments and the development process of WT based on inner product is concluded and the applications of major developments in rotating machinery fault diagnosis are also summarized.

387 citations

Journal ArticleDOI
TL;DR: A hydrogel-dielectric-elastomer system, polyacrylamide and poly(dimethylsiloxane) (PDMS), is adapted for extrusion printing for integrated device fabrication with no visible signs of delamination and geometrically scaling resistance under moderate uniaxial tension and fatigue.
Abstract: A hydrogel-dielectric-elastomer system, polyacrylamide and poly(dimethylsiloxane) (PDMS), is adapted for extrusion printing for integrated device fabrication. A lithium-chloride-containing hydrogel printing ink is developed and printed onto treated PDMS with no visible signs of delamination and geometrically scaling resistance under moderate uniaxial tension and fatigue. A variety of designs are demonstrated, including a resistive strain gauge and an ionic cable.

387 citations

Journal ArticleDOI
TL;DR: In this article, a materials design strategy combining a machine learning (ML) surrogate model with experimental design algorithms to search for high entropy alloys (HEAs) with large hardness in a model Al-Co-Cr-Cu-Fe-Ni system was proposed.

387 citations

Journal ArticleDOI
TL;DR: The results show that the introduction of highly crystalline small molecule donors into ternary OSCs is an effective means to enhance the charge transport and thus increase the active layer thickness of ternARY Oscs to make them more suitable for roll-to-roll production than previous thinner devices.
Abstract: Ternary organic solar cells (OSCs) have attracted much research attention in the past few years, as ternary organic blends can broaden the absorption range of OSCs without the use of complicated tandem cell structures. Despite their broadened absorption range, the light harvesting capability of ternary OSCs is still limited because most ternary OSCs use thin active layers of about 100 nm in thickness, which is not sufficient to absorb all photons in their spectral range and may also cause problems for future roll-to-roll mass production that requires thick active layers. In this paper, we report a highly efficient ternary OSC (11.40%) obtained by incorporating a nematic liquid crystalline small molecule (named benzodithiophene terthiophene rhodanine (BTR)) into a state-of-the-art PTB7-Th:PC71BM binary system. The addition of BTR into PTB7-Th:PC71BM was found to improve the morphology of the blend film with decreased π–π stacking distance, enlarged coherence length, and enhanced domain purity. This resulte...

386 citations

Journal ArticleDOI
TL;DR: This work demonstrates a rational design for fine-tuned crystallinity of polymer acceptors, and reveals the high potential of all-PSCs through structure and morphology engineering of semicrystalline polymer:polymer blends.
Abstract: Growing interests have been devoted to the design of polymer acceptors as potential replacement for fullerene derivatives for high-performance all polymer solar cells (all-PSCs). One key factor that is limiting the efficiency of all-PSCs is the low fill factor (FF) (normally <0.65), which is strongly correlated with the mobility and film morphology of polymer:polymer blends. In this work, we find a facile method to modulate the crystallinity of the well-known naphthalene diimide (NDI) based polymer N2200, by replacing a certain amount of bithiophene (2T) units in the N2200 backbone by single thiophene (T) units and synthesizing a series of random polymers PNDI-Tx, where x is the percentage of the single T. The acceptor PNDI-T10 is properly miscible with the low band gap donor polymer PTB7-Th, and the nanostructured blend promotes efficient exciton dissociation and charge transport. Solvent annealing (SA) enables higher hole and electron mobilities, and further suppresses the bimolecular recombination. As expected, the PTB7-Th:PNDI-T10 solar cells attain a high PCE of 7.6%, which is a 2-fold increase compared to that of PTB7-Th:N2200 solar cells. The FF of 0.71 reaches the highest value among all-PSCs to date. Our work demonstrates a rational design for fine-tuned crystallinity of polymer acceptors, and reveals the high potential of all-PSCs through structure and morphology engineering of semicrystalline polymer:polymer blends.

385 citations


Authors

Showing all 86109 results

NameH-indexPapersCitations
Feng Zhang1721278181865
Yang Yang1642704144071
Jian Yang1421818111166
Lei Zhang130231286950
Yang Liu1292506122380
Jian Zhou128300791402
Chao Zhang127311984711
Bin Wang126222674364
Xin Wang121150364930
Bo Wang119290584863
Xuan Zhang119153065398
Jian Liu117209073156
Andrey L. Rogach11757646820
Yadong Yin11543164401
Xin Li114277871389
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

96% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Fudan University
117.9K papers, 2.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023306
20221,657
202111,508
202011,183
201910,012
20188,215