scispace - formally typeset
Search or ask a question
Institution

Xi'an Jiaotong University

EducationXi'an, China
About: Xi'an Jiaotong University is a education organization based out in Xi'an, China. It is known for research contribution in the topics: Heat transfer & Dielectric. The organization has 85440 authors who have published 99682 publications receiving 1579683 citations. The organization is also known as: '''Xi'an Jiaotong University''' & Xi'an Jiao Tong University.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed approach to intelligent fault diagnosis based on statistics analysis, an improved distance evaluation technique and adaptive neuro-fuzzy inference system (ANFIS) can reliably recognise different fault categories and severities.
Abstract: This paper presents a new approach to intelligent fault diagnosis based on statistics analysis, an improved distance evaluation technique and adaptive neuro-fuzzy inference system (ANFIS). The approach consists of three stages. First, different features, including time-domain statistical characteristics, frequency-domain statistical characteristics and empirical mode decomposition (EMD) energy entropies, are extracted to acquire more fault characteristic information. Second, an improved distance evaluation technique is proposed, and with it, the most superior features are selected from the original feature set. Finally, the most superior features are fed into ANFIS to identify different abnormal cases. The proposed approach is applied to fault diagnosis of rolling element bearings, and testing results show that the proposed approach can reliably recognise different fault categories and severities. Moreover, the effectiveness of the proposed feature selection method is also demonstrated by the testing results.

350 citations

Journal ArticleDOI
TL;DR: In this article, a review of different concepts/strategies for SOFC-based integration systems, which are timely transformational energy-related technologies available to overcome the threats posed by climate change and energy security, is presented.

350 citations

Journal ArticleDOI
01 Jun 2020
TL;DR: The cellular mechanisms and danger of this “second wave” effect of COVID-19 to the human body, along with the effects of aging, proper nutrition, and regular physical activity, are reviewed in this editorial article.
Abstract: The SARS-CoV-2-caused COVID-19 pandemic has resulted in a devastating threat to human society in terms of health, economy, and lifestyle. Although the virus usually first invades and infects the lung and respiratory track tissue, in extreme cases, almost all major organs in the body are now known to be negatively impacted often leading to severe systemic failure in some people. Unfortunately, there is currently no effective treatment for this disease. Pre-existing pathological conditions or comorbidities such as age are a major reason for premature death and increased morbidity and mortality. The immobilization due to hospitalization and bed rest and the physical inactivity due to sustained quarantine and social distancing can downregulate the ability of organs systems to resist to viral infection and increase the risk of damage to the immune, respiratory, cardiovascular, musculoskeletal systems and the brain. The cellular mechanisms and danger of this “second wave” effect of COVID-19 to the human body, along with the effects of aging, proper nutrition, and regular physical activity, are reviewed in this article.

349 citations

Journal ArticleDOI
TL;DR: Greater enhanced valley spitting in monolayer WSe2 is shown, utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate, which may enable valleytronic and quantum-computing applications.
Abstract: Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition-metal dichalcogenide (TMDC) with a broken inversion symmetry possesses two degenerate yet inequivalent valleys, which offers unique opportunities for valley control through the helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest (∼0.2 meV T-1). Here we show greatly enhanced valley spitting in monolayer WSe2, utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magnetoreflectance measurements and corresponds to an effective exchange field of ∼12 T. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing the MEF of a magnetic insulator can induce magnetic order and valley and spin polarization in TMDCs, which may enable valleytronic and quantum-computing applications.

349 citations

Journal ArticleDOI
TL;DR: This paper proposes a novel learning method, called improved balanced random forests (IBRF), and demonstrates its application to churn prediction, and finds it to improve prediction accuracy significantly compared with other algorithms, such as artificial neural networks, decision trees, and class-weighted core support vector machines.
Abstract: Churn prediction is becoming a major focus of banks in China who wish to retain customers by satisfying their needs under resource constraints. In churn prediction, an important yet challenging problem is the imbalance in the data distribution. In this paper, we propose a novel learning method, called improved balanced random forests (IBRF), and demonstrate its application to churn prediction. We investigate the effectiveness of the standard random forests approach in predicting customer churn, while also integrating sampling techniques and cost-sensitive learning into the approach to achieve a better performance than most existing algorithms. The nature of IBRF is that the best features are iteratively learned by altering the class distribution and by putting higher penalties on misclassification of the minority class. We apply the method to a real bank customer churn data set. It is found to improve prediction accuracy significantly compared with other algorithms, such as artificial neural networks, decision trees, and class-weighted core support vector machines (CWC-SVM). Moreover, IBRF also produces better prediction results than other random forests algorithms such as balanced random forests and weighted random forests.

349 citations


Authors

Showing all 86109 results

NameH-indexPapersCitations
Feng Zhang1721278181865
Yang Yang1642704144071
Jian Yang1421818111166
Lei Zhang130231286950
Yang Liu1292506122380
Jian Zhou128300791402
Chao Zhang127311984711
Bin Wang126222674364
Xin Wang121150364930
Bo Wang119290584863
Xuan Zhang119153065398
Jian Liu117209073156
Andrey L. Rogach11757646820
Yadong Yin11543164401
Xin Li114277871389
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

96% related

Zhejiang University
183.2K papers, 3.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Fudan University
117.9K papers, 2.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023306
20221,655
202111,508
202011,183
201910,012
20188,215