scispace - formally typeset
Search or ask a question

Showing papers by "Xiamen University published in 2020"


Journal ArticleDOI
Theo Vos1, Theo Vos2, Theo Vos3, Stephen S Lim  +2416 moreInstitutions (246)
TL;DR: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates, and there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries.

5,802 citations


Journal ArticleDOI
TL;DR: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure.

3,059 citations


Journal ArticleDOI
TL;DR: The authors' review found the average R0 for 2019-nCoV to be 3.28, which exceeds WHO estimates of 1.4 to 2.5, and is higher than expected.
Abstract: Teaser: Our review found the average R0 for 2019-nCoV to be 3.28, which exceeds WHO estimates of 1.4 to 2.5.

2,664 citations


Journal ArticleDOI
TL;DR: The findings provide strong empirical support for the routine application of serological testing in the diagnosis and management of COVID-19 patients and offer vital clinical information during the course of SARS-CoV-2 infection.
Abstract: BACKGROUND: The novel coronavirus SARS-CoV-2 is a newly emerging virus. The antibody response in infected patients remains largely unknown, and the clinical value of antibody testing has not been fully demonstrated. METHODS: 173 patients with SARS-CoV-2 infection were enrolled. Their serial plasma samples (n = 535) collected during hospitalization were tested for total antibodies (Ab), IgM, and IgG against SARS-CoV-2. The dynamics of antibodies with disease progress were analyzed. RESULTS: Among 173 patients, the seroconversion rates for Ab, IgM, and IgG were 93.1%, 82.7%, and 64.7%, respectively. The reason for the negative antibody findings in 12 patients might be due to the lack of blood samples at the later stage of illness. The median seroconversion times for Ab, IgM, and then IgG were days 11, 12, and 4, respectively. The presence of antibodies was <40% among patients within 1 week of onset, and rapidly increased to 100.0% (Ab), 94.3% (IgM), and 79.8% (IgG) by day 15 after onset. In contrast, RNA detectability decreased from 66.7% (58/87) in samples collected before day 7 to 45.5% (25/55) during days 15-39. Combining RNA and antibody detection significantly improved the sensitivity of pathogenic diagnosis for COVID-19 (P < .001), even in the early phase of 1 week from onset (P = .007). Moreover, a higher titer of Ab was independently associated with a worse clinical classification (P = .006). CONCLUSIONS: Antibody detection offers vital clinical information during the course of SARS-CoV-2 infection. The findings provide strong empirical support for the routine application of serological testing in the diagnosis and management of COVID-19 patients.

2,223 citations


Journal ArticleDOI
28 Jan 2020-ACS Nano
TL;DR: Prominent authors from all over the world joined efforts to summarize the current state-of-the-art in understanding and using SERS, as well as to propose what can be expected in the near future, in terms of research, applications, and technological development.
Abstract: The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

1,768 citations


Journal ArticleDOI
03 Apr 2020
TL;DR: Random Erasing as mentioned in this paper randomly selects a rectangle region in an image and erases its pixels with random values, which reduces the risk of overfitting and makes the model robust to occlusion.
Abstract: In this paper, we introduce Random Erasing, a new data augmentation method for training the convolutional neural network (CNN). In training, Random Erasing randomly selects a rectangle region in an image and erases its pixels with random values. In this process, training images with various levels of occlusion are generated, which reduces the risk of over-fitting and makes the model robust to occlusion. Random Erasing is parameter learning free, easy to implement, and can be integrated with most of the CNN-based recognition models. Albeit simple, Random Erasing is complementary to commonly used data augmentation techniques such as random cropping and flipping, and yields consistent improvement over strong baselines in image classification, object detection and person re-identification. Code is available at: https://github.com/zhunzhong07/Random-Erasing.

1,748 citations


Journal ArticleDOI
Joan B. Soriano1, Parkes J Kendrick2, Katherine R. Paulson2, Vinay Gupta2  +311 moreInstitutions (178)
TL;DR: It is shown that chronic respiratory diseases remain a leading cause of death and disability worldwide, with growth in absolute numbers but sharp declines in several age-standardised estimators since 1990.

829 citations


Posted ContentDOI
03 Mar 2020-medRxiv
TL;DR: Combining RNA and antibody detections significantly improved the sensitivity of pathogenic diagnosis for COVID-19 patients (p < 0.001), even in early phase of 1-week since onset (p = 0.007).
Abstract: Summary Background The novel coronavirus SARS-CoV-2 is a newly emerging virus. The antibody response in infected patient remains largely unknown, and the clinical values of antibody testing have not been fully demonstrated. Methods A total of 173 patients with confirmed SARS-CoV-2 infection were enrolled. Their serial plasma samples (n = 535) collected during the hospitalization period were tested for total antibodies (Ab), IgM and IgG against SARS-CoV-2 using immunoassays. The dynamics of antibodies with the progress and severity of disease was analyzed. Results Among 173 patients, the seroconversion rate for Ab, IgM and IgG was 93.1% (161/173), 82.7% (143/173) and 64.7% (112/173), respectively. Twelve patients who had not seroconverted were those only blood samples at the early stage of illness were collected. The seroconversion sequentially appeared for Ab, IgM and then IgG, with a median time of 11, 12 and 14 days, respectively. The presence of antibodies was Conclusions The antibody detection offers vital clinical information during the course of SARS-CoV-2 infection. The findings provide strong empirical support for the routine application of serological testing in the diagnosis and management of COVID-19 patients.

725 citations


Journal ArticleDOI
Sadaf G. Sepanlou1, Saeid Safiri2, Catherine Bisignano3, Kevin S Ikuta4  +198 moreInstitutions (106)
TL;DR: Mortality, prevalence, and DALY estimates are compared with those expected according to the Socio-demographic Index (SDI) as a proxy for the development status of regions and countries, and a significant increase in age-standardised prevalence rate of decompensated cirrhosis between 1990 and 2017.

670 citations


Journal ArticleDOI
TL;DR: The model showed that the transmissibility of SARS-CoV-2 was higher than the MiddleEast respiratory syndrome in the Middle East countries, similar to severe acute respiratory syndrome, but lower than MERS in the Republic of Korea.
Abstract: As reported by the World Health Organization, a novel coronavirus (2019-nCoV) was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January, 2020. The virus was named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by International Committee on Taxonomy of Viruses on 11 February, 2020. This study aimed to develop a mathematical model for calculating the transmissibility of the virus. In this study, we developed a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source (probably be bats) to the human infection. Since the Bats-Hosts-Reservoir network was hard to explore clearly and public concerns were focusing on the transmission from Huanan Seafood Wholesale Market (reservoir) to people, we simplified the model as Reservoir-People (RP) transmission network model. The next generation matrix approach was adopted to calculate the basic reproduction number (R0) from the RP model to assess the transmissibility of the SARS-CoV-2. The value of R0 was estimated of 2.30 from reservoir to person and 3.58 from person to person which means that the expected number of secondary infections that result from introducing a single infected individual into an otherwise susceptible population was 3.58. Our model showed that the transmissibility of SARS-CoV-2 was higher than the Middle East respiratory syndrome in the Middle East countries, similar to severe acute respiratory syndrome, but lower than MERS in the Republic of Korea.

658 citations


Journal ArticleDOI
01 Jun 2020
TL;DR: In this article, a fluorine-modified copper catalyst was proposed for electrocatalytic CO2 electroreduction in a flow cell, achieving an ultrahigh current density of 1.6
Abstract: Electrocatalytic reduction of CO2 into multicarbon (C2+) products is a highly attractive route for CO2 utilization; however, the yield of C2+ products remains low because of the limited C2+ selectivity at high CO2 conversion rates. Here we report a fluorine-modified copper catalyst that exhibits an ultrahigh current density of 1.6 A cm−2 with a C2+ (mainly ethylene and ethanol) Faradaic efficiency of 80% for electrocatalytic CO2 reduction in a flow cell. The C2–4 selectivity reaches 85.8% at a single-pass yield of 16.5%. We show a hydrogen-assisted C–C coupling mechanism between adsorbed CHO intermediates for C2+ formation. Fluorine enhances water activation, CO adsorption and hydrogenation of adsorbed CO to CHO intermediate that can readily undergo coupling. Our findings offer an opportunity to design highly active and selective CO2 electroreduction catalysts with potential for practical application. Electrocatalytic reduction of CO2 into multicarbon (C2+) products is a highly attractive route for CO2 utilization. Now, a fluorine-modified copper catalyst is shown to achieve current densities of 1.6 A cm−2 with a C2+ Faradaic efficiency of 80% for electrocatalytic CO2 reduction in a flow cell.

Proceedings ArticleDOI
14 Jun 2020
TL;DR: This paper proposes a novel filter pruning method by exploring the High Rank of feature maps (HRank), inspired by the discovery that the average rank of multiple feature maps generated by a single filter is always the same, regardless of the number of image batches CNNs receive.
Abstract: Neural network pruning offers a promising prospect to facilitate deploying deep neural networks on resource-limited devices. However, existing methods are still challenged by the training inefficiency and labor cost in pruning designs, due to missing theoretical guidance of non-salient network components. In this paper, we propose a novel filter pruning method by exploring the High Rank of feature maps (HRank). Our HRank is inspired by the discovery that the average rank of multiple feature maps generated by a single filter is always the same, regardless of the number of image batches CNNs receive. Based on HRank, we develop a method that is mathematically formulated to prune filters with low-rank feature maps. The principle behind our pruning is that low-rank feature maps contain less information, and thus pruned results can be easily reproduced. Besides, we experimentally show that weights with high-rank feature maps contain more important information, such that even when a portion is not updated, very little damage would be done to the model performance. Without introducing any additional constraints, HRank leads to significant improvements over the state-of-the-arts in terms of FLOPs and parameters reduction, with similar accuracies. For example, with ResNet-110, we achieve a 58.2%-FLOPs reduction by removing 59.2% of the parameters, with only a small loss of $0.14\%$ in top-1 accuracy on CIFAR-10. With Res-50, we achieve a 43.8%-FLOPs reduction by removing 36.7% of the parameters, with only a loss of 1.17% in the top-1 accuracy on ImageNet. The codes can be available at https://github.com/lmbxmu/HRank.

Journal ArticleDOI
TL;DR: Bao et al. as discussed by the authors developed low-concentration electrolytes with a single-solvent and single-salt formulation, offering promise for high-energy and long-cycling Li metal batteries.
Abstract: Electrolyte engineering is critical for developing Li metal batteries. While recent works improved Li metal cyclability, a methodology for rational electrolyte design remains lacking. Herein, we propose a design strategy for electrolytes that enable anode-free Li metal batteries with single-solvent single-salt formations at standard concentrations. Rational incorporation of –CF2– units yields fluorinated 1,4-dimethoxylbutane as the electrolyte solvent. Paired with 1 M lithium bis(fluorosulfonyl)imide, this electrolyte possesses unique Li–F binding and high anion/solvent ratio in the solvation sheath, leading to excellent compatibility with both Li metal anodes (Coulombic efficiency ~ 99.52% and fast activation within five cycles) and high-voltage cathodes (~6 V stability). Fifty-μm-thick Li|NMC batteries retain 90% capacity after 420 cycles with an average Coulombic efficiency of 99.98%. Industrial anode-free pouch cells achieve ~325 Wh kg−1 single-cell energy density and 80% capacity retention after 100 cycles. Our design concept for electrolytes provides a promising path to high-energy, long-cycling Li metal batteries. The realization of the full potential of Li metal batteries requires high-performance electrolytes. Here Z. Bao and colleagues develop low-concentration electrolytes with a single-solvent and single-salt formulation, offering promise for high-energy and long-cycling batteries.

Journal ArticleDOI
TL;DR: Mental health outcomes were statistically positively correlated with skin lesion and negatively correlated with self-efficacy, resilience, social support, and frontline work willingness, and future interventions at the national and organisational levels are needed.

Journal ArticleDOI
TL;DR: The findings demonstrate the utility of HBM constructs in understanding COVID-19 vaccination intent and WTP and it is important to improve health promotion and reduce the barriers to CO VID-19 vaccine.
Abstract: Background This study attempts to understand coronavirus disease 2019 (COVID-19) vaccine demand and hesitancy by assessing the public’s vaccination intention and willingness-to-pay (WTP). Confidence in COVID-19 vaccines produced in China and preference for domestically-made or foreign-made vaccines was also investigated. Methods A nationwide cross-sectional, self-administered online survey was conducted on 1–19 May 2020. The health belief model (HBM) was used as a theoretical framework for understanding COVID-19 vaccination intent and WTP. Results A total of 3,541 complete responses were received. The majority reported a probably yes intent (54.6%), followed by a definite yes intent (28.7%). The perception that vaccination decreases the chances of getting COVID-19 under the perceived benefit construct (OR = 3.14, 95% CI 2.05–4.83) and not being concerned about the efficacy of new COVID-19 vaccines under the perceived barriers construct (OR = 1.65, 95% CI 1.31–2.09) were found to have the highest significant odds of a definite intention to take the COVID-19 vaccine. The median (interquartile range [IQR]) of WTP for COVID-19 vaccine was CNY¥200/US$28 (IQR CNY¥100–500/USD$14–72). The highest marginal WTP for the vaccine was influenced by socio-economic factors. The majority were confident (48.7%) and completely confident (46.1%) in domestically-made COVID-19 vaccine. 64.2% reported a preference for a domestically-made over foreign-made COVID-19 vaccine. Conclusions The findings demonstrate the utility of HBM constructs in understanding COVID-19 vaccination intent and WTP. It is important to improve health promotion and reduce the barriers to COVID-19 vaccination.

Journal ArticleDOI
09 Sep 2020-Nature
TL;DR: Investigation of a chromium-based metal–organic framework shows that the location of added TiO 2 inside specific mesopores strongly affects the ability of the material to catalyse photoreduction of CO 2, and facilitates photocatalytic CO 2 reduction.
Abstract: Metal–organic frameworks (MOFs)1–3 are known for their specific interactions with gas molecules4,5; this, combined with their rich and ordered porosity, makes them promising candidates for the photocatalytic conversion of gas molecules to useful products6. However, attempts to use MOFs or MOF-based composites for CO2 photoreduction6–13 usually result in far lower CO2 conversion efficiency than that obtained from state-of-the-art solid-state or molecular catalysts14–18, even when facilitated by sacrificial reagents. Here we create ‘molecular compartments’ inside MOF crystals by growing TiO2 inside different pores of a chromium terephthalate-based MOF (MIL-101) and its derivatives. This allows for synergy between the light-absorbing/electron-generating TiO2 units and the catalytic metal clusters in the backbones of MOFs, and therefore facilitates photocatalytic CO2 reduction, concurrent with production of O2. An apparent quantum efficiency for CO2 photoreduction of 11.3 per cent at a wavelength of 350 nanometres is observed in a composite that consists of 42 per cent TiO2 in a MIL-101 derivative, namely, 42%-TiO2-in-MIL-101-Cr-NO2. TiO2 units in one type of compartment in this composite are estimated to be 44 times more active than those in the other type, underlining the role of precise positioning of TiO2 in this system. Investigation of a chromium-based metal–organic framework shows that the location of added TiO2 inside specific mesopores strongly affects the ability of the material to catalyse photoreduction of CO2.

Journal ArticleDOI
TL;DR: The key result is an abrupt 8.8% decrease in global CO2 emissions in the first half of 2020 compared to the same period in 2019, larger than during previous economic downturns or World War II.
Abstract: The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (-1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic's effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.

Journal ArticleDOI
TL;DR: In this review, the fundamentals of photocatalytic CO2 reduction and Z-scheme systems are introduced, and challenges and opportunities are presented to open a new epoch in engineering high-efficiency Z- Scheme photoc atalyticCO2 reduction systems.
Abstract: Transforming CO2 into fuels by utilizing sunlight is promising to synchronously overcome global warming and energy-supply issues. It is crucial to design efficient photocatalysts with intriguing features such as robust light-harvesting ability, strong redox potential, high charge-separation, and excellent durability. Hitherto, a single-component photocatalyst is incapable to simultaneously meet all these criteria. Inspired by natural photosynthesis, constructing artificial Z-scheme photocatalysts provides a facile way to conquer these bottlenecks. In this review, we firstly introduce the fundamentals of photocatalytic CO2 reduction and Z-scheme systems. Thereafter we discuss state-of-the-art Z-scheme photocatalytic CO2 reduction, whereby special attention is placed on the predominant factors that affect photoactivity. Additionally, further modifications that are important for efficient photocatalysis are reviewed.

Journal ArticleDOI
TL;DR: This work study transfer learning of the deep convolutional neural networks for the identification of plant leaf diseases and consider using the pre-trained model learned from the typical massive datasets, and then transfer to the specific task trained by the authors' own data.

Journal ArticleDOI
03 Apr 2020
TL;DR: GMAN as mentioned in this paper adapts an encoder-decoder architecture, where both the encoder and the decoder consist of multiple spatio-temporal attention blocks to model the impact of the spatiotemporal factors on traffic conditions, and proposes a graph multi-attention network (GMAN) to predict traffic conditions for time steps ahead at different locations on a road network graph.
Abstract: Long-term traffic prediction is highly challenging due to the complexity of traffic systems and the constantly changing nature of many impacting factors. In this paper, we focus on the spatio-temporal factors, and propose a graph multi-attention network (GMAN) to predict traffic conditions for time steps ahead at different locations on a road network graph. GMAN adapts an encoder-decoder architecture, where both the encoder and the decoder consist of multiple spatio-temporal attention blocks to model the impact of the spatio-temporal factors on traffic conditions. The encoder encodes the input traffic features and the decoder predicts the output sequence. Between the encoder and the decoder, a transform attention layer is applied to convert the encoded traffic features to generate the sequence representations of future time steps as the input of the decoder. The transform attention mechanism models the direct relationships between historical and future time steps that helps to alleviate the error propagation problem among prediction time steps. Experimental results on two real-world traffic prediction tasks (i.e., traffic volume prediction and traffic speed prediction) demonstrate the superiority of GMAN. In particular, in the 1 hour ahead prediction, GMAN outperforms state-of-the-art methods by up to 4% improvement in MAE measure. The source code is available at https://github.com/zhengchuanpan/GMAN.

Proceedings ArticleDOI
14 Jun 2020
TL;DR: SiamBAN views the visual tracking problem as a parallel classification and regression problem, and thus directly classifies objects and regresses their bounding boxes in a unified FCN, making SiamB Ban more flexible and general.
Abstract: Most of the existing trackers usually rely on either a multi-scale searching scheme or pre-defined anchor boxes to accurately estimate the scale and aspect ratio of a target. Unfortunately, they typically call for tedious and heuristic configurations. To address this issue, we propose a simple yet effective visual tracking framework (named Siamese Box Adaptive Network, SiamBAN) by exploiting the expressive power of the fully convolutional network (FCN). SiamBAN views the visual tracking problem as a parallel classification and regression problem, and thus directly classifies objects and regresses their bounding boxes in a unified FCN. The no-prior box design avoids hyper-parameters associated with the candidate boxes, making SiamBAN more flexible and general. Extensive experiments on visual tracking benchmarks including VOT2018, VOT2019, OTB100, NFS, UAV123, and LaSOT demonstrate that SiamBAN achieves state-of-the-art performance and runs at 40 FPS, confirming its effectiveness and efficiency. The code will be available at https://github.com/hqucv/siamban.

Journal ArticleDOI
TL;DR: Serology testing provides an important complement to RNA testing in the later stages of illness for pathogenic-specific diagnosis and helpful information to evaluate the adapted immunity status of patients.
Abstract: Background Timely diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a prerequisite for treatment and prevention. The serology characteristics and complement diagnosis value of the antibody test to RNA test need to be demonstrated. Method Serial sera of 80 patients with PCR-confirmed coronavirus disease 2019 (COVID-19) were collected at the First Affiliated Hospital of Zhejiang University, Hangzhou, China. Total antibody (Ab), IgM and IgG antibodies against SARS-CoV-2 were detected, and the antibody dynamics during the infection were described. Results The seroconversion rates for Ab, IgM and IgG were 98.8%, 93.8% and 93.8%, respectively. The first detectible serology marker was Ab, followed by IgM and IgG, with a median seroconversion time of 15, 18 and 20 days post exposure (d.p.e.) or 9, 10 and 12 days post onset (d.p.o.), respectively. The antibody levels increased rapidly beginning at 6 d.p.o. and were accompanied by a decline in viral load. For patients in the early stage of illness (0–7 d.p.o), Ab showed the highest sensitivity (64.1%) compared with IgM and IgG (33.3% for both; p Conclusions A typical acute antibody response is induced during SARS-CoV-2 infection. Serology testing provides an important complement to RNA testing in the later stages of illness for pathogenic-specific diagnosis and helpful information to evaluate the adapted immunity status of patients.

Journal ArticleDOI
TL;DR: This work discusses glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity, and discusses other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and APOE.
Abstract: Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.

Journal ArticleDOI
TL;DR: The evolution, structure, and regulation of the AMPK and TOR pathways and the complex mechanisms by which they interact are discussed.

Journal ArticleDOI
TL;DR: The new guidelines were endorsed and promulgated by the Bureau of Medical Administration of the National Health Commission of the People’s Republic of China in December 2019 and reflect the real-world situation in China regarding diagnosing and treating liver cancer in recent years.
Abstract: Background: Primary liver cancer, around 90% are hepatocellular carcinoma in China, is the fourth most common malignancy and the second leading cause of tumor-related death, thereby posing a significant threat to the life and health of the Chinese people. Summary: Since the publication of Guidelines for Diagnosis and Treatment of Primary Liver Cancer (2017 Edition) in 2018, additional high-quality evidence has emerged with relevance to the diagnosis, staging, and treatment of liver cancer in and outside China that requires the guidelines to be updated. The new edition (2019 Edition) was written by more than 70 experts in the field of liver cancer in China. They reflect the real-world situation in China regarding diagnosing and treating liver cancer in recent years. Key Messages: Most importantly, the new guidelines were endorsed and promulgated by the Bureau of Medical Administration of the National Health Commission of the People’s Republic of China in December 2019.

Journal ArticleDOI
TL;DR: Synthesis of atomically dispersed Rh on N-doped carbon is successfully synthesized and it is discovered that SA-Rh/CN exhibits promising electrocatalytic properties for formic acid oxidation and exhibits greatly enhanced tolerance to CO poisoning.
Abstract: To meet the requirements of potential applications, it is of great importance to explore new catalysts for formic acid oxidation that have both ultra-high mass activity and CO resistance. Here, we successfully synthesize atomically dispersed Rh on N-doped carbon (SA-Rh/CN) and discover that SA-Rh/CN exhibits promising electrocatalytic properties for formic acid oxidation. The mass activity shows 28- and 67-fold enhancements compared with state-of-the-art Pd/C and Pt/C, respectively, despite the low activity of Rh/C. Interestingly, SA-Rh/CN exhibits greatly enhanced tolerance to CO poisoning, and Rh atoms in SA-Rh/CN resist sintering after long-term testing, resulting in excellent catalytic stability. Density functional theory calculations suggest that the formate route is more favourable on SA-Rh/CN. According to calculations, the high barrier to produce CO, together with the relatively unfavourable binding with CO, contribute to its CO tolerance. Atomically dispersed Rh on N-doped carbon exhibits 28- and 67-fold enhancements compared with state-of-the-art Pd/C and Pt/C, despite the low activity of Rh/C. The Rh single atoms exhibit high tolerance to CO poisoning compared to Rh nanoparticles.

Journal ArticleDOI
Ana Isabel Pérez-Jiménez1, Danya Lyu1, Zhi-Xuan Lu1, Guo-Kun Liu1, Bin Ren1 
TL;DR: The present minireview focuses on analyzing current and potential strategies to tackle problems and realize the SERS performance necessary for translation to practical applications.
Abstract: Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique with sensitivity down to the single molecule level that provides fine molecular fingerprints, allowing for direct identification of target analytes. Extensive theoretical and experimental research, together with continuous development of nanotechnology, has significantly broadened the scope of SERS and made it a hot research field in chemistry, physics, materials, biomedicine, and so on. However, SERS has not been developed into a routine analytical technique, and continuous efforts have been made to address the problems preventing its real-world application. The present minireview focuses on analyzing current and potential strategies to tackle problems and realize the SERS performance necessary for translation to practical applications.

Journal ArticleDOI
TL;DR: In this article, a single-crystalline LiNi0.83Co0.11Mn0.06O2 (SC-NCM) with primary particles of 3-6-μm diameter is developed and comprehensively investigated, which exhibits superior cycling performance at both room temperature and elevated temperature (55 °C).

Journal ArticleDOI
TL;DR: There was no evidence of a difference in favourable outcomes of patients receiving endovascular therapy compared with those receiving standard medical therapy alone, and the trial was terminated early after 131 patients had been randomly assigned because of high crossover rate and poor recruitment.
Abstract: Summary Background Previous randomised trials have shown an overwhelming benefit of mechanical thrombectomy for treating patients with stroke caused by large vessel occlusion of the anterior circulation. Whether endovascular treatment is beneficial for vertebrobasilar artery occlusion remains unknown. In this study, we aimed to investigate the safety and efficacy of endovascular treatment of acute strokes due to vertebrobasilar artery occlusion. Methods We did a multicentre, randomised, open-label trial, with blinded outcome assessment of thrombectomy in patients presenting within 8 h of vertebrobasilar occlusion at 28 centres in China. Patients were randomly assigned (1:1) to endovascular therapy plus standard medical therapy (intervention group) or standard medical therapy alone (control group). The randomisation sequence was computer-generated and stratified by participating centres. Allocation concealment was implemented by use of sealed envelopes. The primary outcome was a modified Rankin scale (mRS) score of 3 or lower (indicating ability to walk unassisted) at 90 days, assessed on an intention-to-treat basis. The primary safety outcome was mortality at 90 days. Secondary safety endpoints included the rates of symptomatic intracranial haemorrhage, device-related complications, and other severe adverse events. The BEST trial is registered with ClinicalTrials.gov , NCT02441556 . Findings Between April 27, 2015, and Sept 27, 2017, we assessed 288 patients for eligibility. The trial was terminated early after 131 patients had been randomly assigned (66 patients to the intervention group and 65 to the control group) because of high crossover rate and poor recruitment. In the intention-to-treat analysis, there was no evidence of a difference in the proportion of participants with mRS 0–3 at 90 days according to treatment (28 [42%] of 66 patients in the intervention group vs 21 [32%] of 65 in the control group; adjusted odds ratio [OR] 1·74, 95% CI 0·81–3·74). Secondary prespecified analyses of the primary outcome, done to assess the effect of crossovers, showed higher rates of mRS 0–3 at 90 days in patients who actually received the intervention compared with those who received standard medical therapy alone in both per-protocol (28 [44%] of 63 patients with intervention vs 13 [25%] of 51 with standard therapy; adjusted OR 2·90, 95% CI 1·20–7·03) and as-treated (36 [47%] of 77 patients with intervention vs 13 [24%] of 54 with standard therapy; 3·02, 1·31–7·00) populations. The 90-day mortality was similar between groups (22 [33%] of 66 patients in the intervention vs 25 [38%] of 65 in the control group; p=0·54) despite a numerically higher prevalence of symptomatic intracranial haemorrhage in the intervention group. Interpretation There was no evidence of a difference in favourable outcomes of patients receiving endovascular therapy compared with those receiving standard medical therapy alone. Results might have been confounded by loss of equipoise over the course of the trial, resulting in poor adherence to the assigned study treatment and a reduced sample size due to the early termination of the study. Funding Jiangsu Provincial Special Program of Medical Science.

Journal ArticleDOI
TL;DR: [68Ga]Ga-DOTA-FAPI-04 PET/CT showed a superior diagnostic efficacy than [18F] FDGPET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer, especially in identifying liver metastases, peritoneal carcinomatosis, and brain tumours.
Abstract: We evaluated the potential usefulness of [68Ga]Ga-DOTA-FAPI-04 positron emission tomography/computed tomography (PET/CT) for the diagnosis of primary and metastatic lesions in various types of cancer, compared with [18F] FDG PET/CT. A total of 75 patients with various types of cancer underwent contemporaneous [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT either for an initial assessment or for recurrence detection. Tumour uptake was quantified by the maximum standard uptake value (SUVmax). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of [18F] FDG and [68Ga]Ga-DOTA-FAPI-04 PET/CT were calculated and compared to evaluate the diagnostic efficacy. The study cohort consisted of 75 patients (47 males and 28 females; median age, 61.5 years; age range, 32–85 years). Fifty-four patients with 12 different tumour entities underwent paired [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for initial assessment, while the other 21 patients underwent paired scans for recurrence detection. [68Ga]Ga-DOTA-FAPI-04 PET/CT was able to clearly identify 12 types of malignant tumours with favourable tumour-to-background contrast, which resulted in a higher detection rate of primary tumours than did [18F] FDG PET/CT (98.2% vs. 82.1%, P = 0.021). Meanwhile, [68Ga]Ga-DOTA-FAPI-04 PET/CT showed a better sensitivity than [18F] FDG PET/CT in the detection of lymph nodes (86.4% vs. 45.5%, P = 0.004) and bone and visceral metastases (83.8% vs. 59.5%, P = 0.004). [68Ga]Ga-DOTA-FAPI-04 PET/CT showed a superior diagnostic efficacy than [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer, especially in identifying liver metastases, peritoneal carcinomatosis, and brain tumours.