scispace - formally typeset
Search or ask a question
Institution

Xiamen University

EducationAmoy, Fujian, China
About: Xiamen University is a education organization based out in Amoy, Fujian, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 50472 authors who have published 54480 publications receiving 1058239 citations. The organization is also known as: Amoy University & Xiàmén Dàxué.


Papers
More filters
Journal ArticleDOI
01 Jul 2019-Nature
TL;DR: Addition of an ionic liquid, BMIMBF4, to metal halide perovskite solar cells improves their efficiency and long-term operation under accelerated aging conditions of high temperature and full-spectrum sunlight.
Abstract: Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies(1-4). Over the past few years, the long-term operational stability of such devices has been gre ...

939 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed over 150 articles on the subject of the effect of contamination on PEM fuel cell and found that even trace amounts of impurities present in either fuel or air streams or fuel cell system components could severely poison the anode, membrane, and cathode, particularly at low-temperature operation.

932 citations

Journal ArticleDOI
TL;DR: In this article, the authors assess the combined impact of eutrophication and ocean acidification on acidity in the coastal ocean, using data collected in the northern Gulf of Mexico and the East China Sea.
Abstract: Human inputs of nutrients to coastal waters can lead to the excessive production of algae, a process known as eutrophication. Microbial consumption of this organic matter lowers oxygen levels in the water 1‐3 . In addition, the carbon dioxide produced during microbial respiration increases acidity. The dissolution of atmospheric carbon dioxide in ocean waters also raises acidity, a process known as ocean acidification. Here, we assess the combined impact of eutrophication and ocean acidification on acidity in the coastal ocean, using data collected in the northern Gulf of Mexico and the East China Sea—two regions heavily influenced by nutrient‐laden rivers. We show that eutrophication in these waters is associated with the development of hypoxia and the acidification of subsurface waters, as expected. Model simulations, using data collected from the northern Gulf of Mexico, however, suggest that the drop in pH since pre-industrial times is greater than that expected from eutrophication and ocean acidification alone. We attribute the additional drop in pH— of 0.05 units—to a reduction in the ability of these carbon dioxide-rich waters to buffer changes in pH. We suggest that eutrophication could increase the susceptibility of coastal

902 citations

Journal ArticleDOI
TL;DR: This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to the current understanding of surface-plasmon (SP) resonances in the nanostructured conductor.
Abstract: Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical strategies for simulating the optical properties and consequential SERS performance of particle-on-substrate systems that might guide the design of SERS-active systems. Finally, some current theoretical attempts are briefly discussed for unifying EM and non-EM contribution to SERS.

878 citations

Journal ArticleDOI
TL;DR: The experimental data agree well with the molecular dynamics simulations, corrected for the long-wavelength phonon contributions by means of the Klemens model, and are expected to stimulate further studies aimed at a better understanding of thermal phenomena in 2D crystals.
Abstract: Among other exotic properties graphene exhibits the highest thermal conductivity observed so far. This is true at least for graphene composed of only 12C atoms. However, it is now shown experimentally that regions of 13C atoms can substantially reduce the thermal conductivity. Aside from their fundamental importance, these results suggest that thermal conductivity can be tailored by varying the relative amounts of carbon isotopes used.

863 citations


Authors

Showing all 50945 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Lei Jiang1702244135205
Yang Gao1682047146301
William A. Goddard1511653123322
Rui Zhang1512625107917
Xiaoyuan Chen14999489870
Fuqiang Wang145151895014
Galen D. Stucky144958101796
Shu-Hong Yu14479970853
Wei Huang139241793522
Bin Liu138218187085
Jie Liu131153168891
Han Zhang13097058863
Lei Zhang130231286950
Jian Zhou128300791402
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

University of Science and Technology of China
101K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023248
2022942
20216,782
20205,710
20194,982
20184,057