scispace - formally typeset
Search or ask a question
Institution

Xiamen University

EducationAmoy, Fujian, China
About: Xiamen University is a education organization based out in Amoy, Fujian, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 50472 authors who have published 54480 publications receiving 1058239 citations. The organization is also known as: Amoy University & Xiàmén Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a method to use the key scientific project of Fujian Province to improve the performance of the Key Scientific Project (KSP) of the National Natural Science Foundation of China (NNSF).
Abstract: National Natural Science Foundation of China [20625310, 20923004]; National Basic Research Program of China [2005CB221408, 2010CB732303]; Research Fund for the Doctoral Program of Higher Education [20090121110007]; Key Scientific Project of Fujian Province [2009HZ0002-1]

664 citations

Journal ArticleDOI
31 May 2013-Science
TL;DR: Preference-specific antibodies that were substantially more potent than the prophylactic antibody palivizumab were identified, which should enable design of improved vaccine antigens and define new targets for passive prevention of RSV-induced disease.
Abstract: The prefusion state of respiratory syncytial virus (RSV) fusion (F) glycoprotein is the target of most RSV-neutralizing activity in human sera, but its metastability has hindered characterization. To overcome this obstacle, we identified prefusion-specific antibodies that were substantially more potent than the prophylactic antibody palivizumab. The cocrystal structure for one of these antibodies, D25, in complex with the F glycoprotein revealed D25 to lock F in its prefusion state by binding to a quaternary epitope at the trimer apex. Electron microscopy showed that two other antibodies, AM22 and 5C4, also bound to the newly identified site of vulnerability, which we named antigenic site O. These studies should enable design of improved vaccine antigens and define new targets for passive prevention of RSV-induced disease.

659 citations

Journal ArticleDOI
TL;DR: The model showed that the transmissibility of SARS-CoV-2 was higher than the MiddleEast respiratory syndrome in the Middle East countries, similar to severe acute respiratory syndrome, but lower than MERS in the Republic of Korea.
Abstract: As reported by the World Health Organization, a novel coronavirus (2019-nCoV) was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January, 2020. The virus was named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by International Committee on Taxonomy of Viruses on 11 February, 2020. This study aimed to develop a mathematical model for calculating the transmissibility of the virus. In this study, we developed a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source (probably be bats) to the human infection. Since the Bats-Hosts-Reservoir network was hard to explore clearly and public concerns were focusing on the transmission from Huanan Seafood Wholesale Market (reservoir) to people, we simplified the model as Reservoir-People (RP) transmission network model. The next generation matrix approach was adopted to calculate the basic reproduction number (R0) from the RP model to assess the transmissibility of the SARS-CoV-2. The value of R0 was estimated of 2.30 from reservoir to person and 3.58 from person to person which means that the expected number of secondary infections that result from introducing a single infected individual into an otherwise susceptible population was 3.58. Our model showed that the transmissibility of SARS-CoV-2 was higher than the Middle East respiratory syndrome in the Middle East countries, similar to severe acute respiratory syndrome, but lower than MERS in the Republic of Korea.

658 citations

Journal ArticleDOI
TL;DR: Experimental results reveal that the porous Co3O4 concave nanocubes present the highest sensitivity to ethanol with fast response/recovery time (< 10 s) and a low detection limit (at least 10 ppm).
Abstract: Porous metal oxides nanomaterials with controlled morphology have received great attention because of their promising applications in catalysis, energy storage and conversion, gas sensing, etc. In this paper, porous Co3O4 concave nanocubes with extremely high specific surface area (120.9 m2·g-1) were synthesized simply by calcining Co-based metal–organic framework (Co-MOF, ZIF-67) templates at the optimized temperature (300 °C), and the formation mechanism of such highly porous structures as well as the influence of the calcination temperature are well explained by taking into account thermal behavior and intrinsic structural features of the Co-MOF precursors. The gas-sensing properties of the as-synthesized porous Co3O4 concave nanocubes were systematically tested towards volatile organic compounds including ethanol, acetone, toluene, and benzene. Experimental results reveal that the porous Co3O4 concave nanocubes present the highest sensitivity to ethanol with fast response/recovery time (< 10 s) and a ...

650 citations

Journal ArticleDOI
TL;DR: This Review systematically introduces and discusses the classic synthesis methods, advanced characterization techniques, and various catalytic applications toward two-dimensional materials confining single-atom catalysts.
Abstract: Two-dimensional materials and single-atom catalysts are two frontier research fields in catalysis. A new category of catalysts with the integration of both aspects has been rapidly developed in recent years, and significant advantages were established to make it an independent research field. In this Review, we will focus on the concept of two-dimensional materials confining single atoms for catalysis. The new electronic states via the integration lead to their mutual benefits in activity, that is, two-dimensional materials with unique geometric and electronic structures can modulate the catalytic performance of the confined single atoms, and in other cases the confined single atoms can in turn affect the intrinsic activity of two-dimensional materials. Three typical two-dimensional materials are mainly involved here, i.e., graphene, g-C3N4, and MoS2, and the confined single atoms include both metal and nonmetal atoms. First, we systematically introduce and discuss the classic synthesis methods, advanced ...

647 citations


Authors

Showing all 50945 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Lei Jiang1702244135205
Yang Gao1682047146301
William A. Goddard1511653123322
Rui Zhang1512625107917
Xiaoyuan Chen14999489870
Fuqiang Wang145151895014
Galen D. Stucky144958101796
Shu-Hong Yu14479970853
Wei Huang139241793522
Bin Liu138218187085
Jie Liu131153168891
Han Zhang13097058863
Lei Zhang130231286950
Jian Zhou128300791402
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

University of Science and Technology of China
101K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023248
2022942
20216,782
20205,710
20194,982
20184,057