scispace - formally typeset
Search or ask a question
Institution

Xiamen University

EducationAmoy, Fujian, China
About: Xiamen University is a education organization based out in Amoy, Fujian, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 50472 authors who have published 54480 publications receiving 1058239 citations. The organization is also known as: Amoy University & Xiàmén Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: A well-dated, pollen-based, ~20-yr-resolution quantitative precipitation reconstruction from an alpine lake in North China, which provides for the first time a direct record of EASM evolution since 14.7 ka, points to strong internal feedback processes driving the EASm, and may aid the understanding of future monsoon behaviour under ongoing anthropogenic climate change.
Abstract: The lack of a precisely-dated, unequivocal climate proxy from northern China, where precipitation variability is traditionally considered as an East Asian summer monsoon (EASM) indicator, impedes our understanding of the behaviour and dynamics of the EASM. Here we present a well-dated, pollen-based, ~20-yr-resolution quantitative precipitation reconstruction (derived using a transfer function) from an alpine lake in North China, which provides for the first time a direct record of EASM evolution since 14.7 ka (ka = thousands of years before present, where the "present" is defined as the year AD 1950). Our record reveals a gradually intensifying monsoon from 14.7-7.0 ka, a maximum monsoon (30% higher precipitation than present) from ~7.8-5.3 ka, and a rapid decline since ~3.3 ka. These insolation-driven EASM trends were punctuated by two millennial-scale weakening events which occurred synchronously to the cold Younger Dryas and at ~9.5-8.5 ka, and by two centennial-scale intervals of enhanced (weakened) monsoon during the Medieval Warm Period (Little Ice Age). Our precipitation reconstruction, consistent with temperature changes but quite different from the prevailing view of EASM evolution, points to strong internal feedback processes driving the EASM, and may aid our understanding of future monsoon behaviour under ongoing anthropogenic climate change.

554 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated whether environmental regulation affects inbound foreign direct investment and found that tougher environmental regulation leads to less FDI in countries with better environmental protections than China.

554 citations

Journal ArticleDOI
TL;DR: It is found that the ORR activity of PmPDA-FeN(x)/C is not sensitive to CO and NO(x) but can be suppressed significantly by halide ions and low valence state sulfur-containing species in acid medium.
Abstract: High-temperature pyrolyzed FeNx/C catalyst is one of the most promising nonprecious metal electrocatalysts for oxygen reduction reaction (ORR). However, it suffers from two challenging problems: insufficient ORR activity and unclear active site structure. Herein, we report a FeNx/C catalyst derived from poly-m-phenylenediamine (PmPDA-FeNx/C) that possesses high ORR activity (11.5 A g–1 at 0.80 V vs RHE) and low H2O2 yield (<1%) in acid medium. The PmPDA-FeNx/C also exhibits high catalytic activity for both reduction and oxidation of H2O2. We further find that the ORR activity of PmPDA-FeNx/C is not sensitive to CO and NOx but can be suppressed significantly by halide ions (e.g., Cl–, F–, and Br–) and low valence state sulfur-containing species (e.g., SCN–, SO2, and H2S). This result reveals that the active sites of the FeNx/C catalyst contains Fe element (mainly as FeIII at high potentials) in acid medium.

552 citations

Journal ArticleDOI
Xiu-Mei Lin1, Yan Cui1, Yan-Hui Xu1, Bin Ren1, Zhong-Qun Tian1 
TL;DR: The existing methods to estimate the surface enhancement factor, a criterion to characterize the SERS activity of a substrate, are analyzed and some guidelines are proposed to obtain the correct enhancement factor.
Abstract: After over 30 years of development, surface-enhanced Raman spectroscopy (SERS) is now facing a very important stage in its history. The explosive development of nanoscience and nanotechnology has assisted the rapid development of SERS, especially during the last 5 years. Further development of surface-enhanced Raman spectroscopy is mainly limited by the reproducible preparation of clean and highly surface enhanced Raman scattering (SERS) active substrates. This review deals with some substrate-related issues. Various methods will be introduced for preparing SERS substrates of Ag and Au for analytical purposes, from SERS substrates prepared by electrochemical or vacuum methods, to well-dispersed Au or Ag nanoparticle sols, to nanoparticle thin film substrates, and finally to ordered nanostructured substrates. Emphasis is placed on the analysis of the advantages and weaknesses of different methods in preparing SERS substrates. Closely related to the application of SERS in the analysis of trace sample and unknown systems, the existing cleaning methods for SERS substrates are analyzed and a combined chemical adsorption and electrochemical oxidation method is proposed to eliminate the interference of contaminants. A defocusing method is proposed to deal with the laser-induced sample decomposition problem frequently met in SERS measurement to obtain strong signals. The existing methods to estimate the surface enhancement factor, a criterion to characterize the SERS activity of a substrate, are analyzed and some guidelines are proposed to obtain the correct enhancement factor.

548 citations

Journal ArticleDOI
TL;DR: The key assumptions underlying the integration of TPCs with Tb are examined to develop a framework within which empiricists can place their work within these limitations, and to facilitate the application of thermal physiology to understanding the biological implications of climate change.
Abstract: Thermal performance curves (TPCs), which quantify how an ectotherm's body temperature (Tb ) affects its performance or fitness, are often used in an attempt to predict organismal responses to climate change. Here, we examine the key - but often biologically unreasonable - assumptions underlying this approach; for example, that physiology and thermal regimes are invariant over ontogeny, space and time, and also that TPCs are independent of previously experienced Tb. We show how a critical consideration of these assumptions can lead to biologically useful hypotheses and experimental designs. For example, rather than assuming that TPCs are fixed during ontogeny, one can measure TPCs for each major life stage and incorporate these into stage-specific ecological models to reveal the life stage most likely to be vulnerable to climate change. Our overall goal is to explicitly examine the assumptions underlying the integration of TPCs with Tb , to develop a framework within which empiricists can place their work within these limitations, and to facilitate the application of thermal physiology to understanding the biological implications of climate change.

545 citations


Authors

Showing all 50945 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Lei Jiang1702244135205
Yang Gao1682047146301
William A. Goddard1511653123322
Rui Zhang1512625107917
Xiaoyuan Chen14999489870
Fuqiang Wang145151895014
Galen D. Stucky144958101796
Shu-Hong Yu14479970853
Wei Huang139241793522
Bin Liu138218187085
Jie Liu131153168891
Han Zhang13097058863
Lei Zhang130231286950
Jian Zhou128300791402
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

University of Science and Technology of China
101K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023248
2022943
20216,784
20205,710
20194,982
20184,057