scispace - formally typeset
Search or ask a question
Institution

Xiamen University

EducationAmoy, Fujian, China
About: Xiamen University is a education organization based out in Amoy, Fujian, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 50472 authors who have published 54480 publications receiving 1058239 citations. The organization is also known as: Amoy University & Xiàmén Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt2-3L nanocubes, which showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR).
Abstract: An effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the deposited Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@PtnL (n = 1–6) core–shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functiona...

427 citations

Journal ArticleDOI
TL;DR: In this article, a stable titanate nanobelt (TNB) particle suspension was prepared by a hydrogen-bond-driven assembly of pre-hydrolysed fluoroalkylsilane (FAS) on its surface.
Abstract: A stable titanate nanobelt (TNB) particle suspension was prepared by a hydrogen-bond-driven assembly of pre-hydrolysed fluoroalkylsilane (FAS) on its surface. A one-step electrophoretic deposition was applied to fabricate a transparent cross-aligned superhydrophobic TNB/FAS film on a conducting glass substrate. By controlling the deposition time, we have shown the transition between a “sticky” hydrophobic state (high contact angle with strong adhesion) and a “sliding” superhydrophobic state (high contact angle with weak adhesion). The optical transmittance can reach as high as 80% throughout most of the visible light region of the spectrum. These coatings have also displayed high chemical stability and self-cleaning ability. Upon heating the hydrophobic coatings at 500 °C, the TNB coating transforms into a porous TiO2(B) structure with superhydrophilic behavior and could be used for anti-fogging applications. With this TiO2-based system, we have demonstrated three different wetting states: superhydrophobicity with weak adhesion, high hydrophobicity with strong adhesion, and superhydrophilicity with immediate water spreading. Moreover, this work has also demonstrated superhydrophobic TNB/FAS films with high chemical stability and good self-cleaning performance and superhydrophilic pore-like TiO2(B) films with rapid water spreading and excellent anti-fogging ability.

426 citations

Journal ArticleDOI
TL;DR: Treatment with CY-09 shows remarkable therapeutic effects on mouse models of cryopyrin-associated autoinflammatory syndrome (CAPS) and type 2 diabetes and indicates that NLRP3 can be targeted in vivo to combatNLRP3-driven diseases.
Abstract: The NLRP3 inflammasome has been implicated in the pathogenesis of a wide variety of human diseases. A few compounds have been developed to inhibit NLRP3 inflammasome activation, but compounds directly and specifically targeting NLRP3 are still not available, so it is unclear whether NLRP3 itself can be targeted to prevent or treat diseases. Here we show that the compound CY-09 specifically blocks NLRP3 inflammasome activation. CY-09 directly binds to the ATP-binding motif of NLRP3 NACHT domain and inhibits NLRP3 ATPase activity, resulting in the suppression of NLRP3 inflammasome assembly and activation. Importantly, treatment with CY-09 shows remarkable therapeutic effects on mouse models of cryopyrin-associated autoinflammatory syndrome (CAPS) and type 2 diabetes. Furthermore, CY-09 is active ex vivo for monocytes from healthy individuals or synovial fluid cells from patients with gout. Thus, our results provide a selective and direct small-molecule inhibitor for NLRP3 and indicate that NLRP3 can be targeted in vivo to combat NLRP3-driven diseases.

426 citations

Posted Content
TL;DR: Li et al. as discussed by the authors examined the effects of audit quality on earnings management and cost of equity capital for two groups of Chinese firms: state-owned enterprises (SOEs) and non-state-owned entities (NSOEs).
Abstract: We examine the effects of audit quality on earnings management and cost of equity capital for two groups of Chinese firms: state-owned enterprises (SOEs) and non-state-owned enterprises (NSOEs). The differences in the nature of the ownership, agency relations and bankruptcy risks lead SOEs to have weaker incentives than NSOEs to engage in earnings management. As a result, the effect of audit quality in reducing earnings management will be greater for NSOEs than for SOEs. In addition, investors’ pricing of information risk as reflected in the cost of equity capital will be more pronounced for NSOEs than for SOEs with high and low audit quality. We find empirical evidence consistent with these hypotheses. Our findings indicate that (1) while high-quality auditors play a governance role in China, that role is limited to a subset of firms, and (2) even under the same legal jurisdiction, the effects of audit quality (in the form of lower earnings management and cost of equity capital) vary across firms with different ownership structures. Our study extends prior research by focusing on the economic consequences of SOEs’ and NSOEs’ auditor choices and underscores the importance of controlling for ownership type when conducting audit research.

425 citations

Journal ArticleDOI
19 Jul 2017-Nature
TL;DR: An AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease is described.
Abstract: The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK), but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.

424 citations


Authors

Showing all 50945 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Lei Jiang1702244135205
Yang Gao1682047146301
William A. Goddard1511653123322
Rui Zhang1512625107917
Xiaoyuan Chen14999489870
Fuqiang Wang145151895014
Galen D. Stucky144958101796
Shu-Hong Yu14479970853
Wei Huang139241793522
Bin Liu138218187085
Jie Liu131153168891
Han Zhang13097058863
Lei Zhang130231286950
Jian Zhou128300791402
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

University of Science and Technology of China
101K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023248
2022942
20216,782
20205,710
20194,982
20184,057