scispace - formally typeset
Search or ask a question
Institution

Xiamen University

EducationAmoy, Fujian, China
About: Xiamen University is a education organization based out in Amoy, Fujian, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 50472 authors who have published 54480 publications receiving 1058239 citations. The organization is also known as: Amoy University & Xiàmén Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: The main purpose of this work is to construct and analyze highly stable time discretizations which allow much larger time steps than those of a standard implicit-explicit approach.
Abstract: Numerical methods for solving the continuum model of the dynamics of the molecular beam epitaxy (MBE) require very large time simulation, and therefore large time steps become necessary. The main purpose of this work is to construct and analyze highly stable time discretizations which allow much larger time steps than those of a standard implicit-explicit approach. To this end, an extra term, which is consistent with the order of the time discretization, is added to stabilize the numerical schemes. Then the stability properties of the resulting schemes are established rigorously. Numerical experiments are carried out to support the theoretical claims. The proposed methods are also applied to simulate the MBE models with large solution times. The power laws for the coarsening process are obtained and are compared with previously published results.

320 citations

Journal ArticleDOI
TL;DR: In this paper, the authors systematically summarize and discuss catalytic conversion strategies from the perspective of catalysts and reaction solvents as well as formation mechanisms and influencing factors for the production of furanic aldehydes from biomass-derived carbohydrates.
Abstract: In recent years, substantial interest has been devoted to the conversion of biomass-derived carbohydrates into furanic aldehydes such as furfural, 5-hydroxymethylfurfural (HMF) and 5-halomethylfurfural, because these products are considered as important versatile intermediates that can be further transformed into a wide variety of high performance fuels and high value-added chemicals. However, low yields and high production costs that are due to the special chemical structures and properties of biomass-derived carbohydrates to a large extent have limited the practical production of furanic aldehydes. Recently, various catalytic conversion strategies have been developed to overcome these limitations. In this review, we systematically summarize and discuss catalytic conversion strategies from the perspective of catalysts and reaction solvents as well as formation mechanisms and influencing factors for the production of furanic aldehydes from biomass-derived carbohydrates. Meanwhile, we also outline the synthesis of furanic aldehyde-based fuels such as 2-methylfuran (MF), 2,5-dimethylfuran (DMF), 5-ethoxymethylfurfural (EMF) and alkanes and chemicals such as levulinic acid (LA), 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA). Moreover, some potential research orientations are proposed based on the major problems encountered in recent research.

320 citations

Journal ArticleDOI
TL;DR: [68Ga]Ga-DOTA-FAPI-04 PET/CT showed a superior diagnostic efficacy than [18F] FDGPET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer, especially in identifying liver metastases, peritoneal carcinomatosis, and brain tumours.
Abstract: We evaluated the potential usefulness of [68Ga]Ga-DOTA-FAPI-04 positron emission tomography/computed tomography (PET/CT) for the diagnosis of primary and metastatic lesions in various types of cancer, compared with [18F] FDG PET/CT. A total of 75 patients with various types of cancer underwent contemporaneous [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT either for an initial assessment or for recurrence detection. Tumour uptake was quantified by the maximum standard uptake value (SUVmax). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of [18F] FDG and [68Ga]Ga-DOTA-FAPI-04 PET/CT were calculated and compared to evaluate the diagnostic efficacy. The study cohort consisted of 75 patients (47 males and 28 females; median age, 61.5 years; age range, 32–85 years). Fifty-four patients with 12 different tumour entities underwent paired [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for initial assessment, while the other 21 patients underwent paired scans for recurrence detection. [68Ga]Ga-DOTA-FAPI-04 PET/CT was able to clearly identify 12 types of malignant tumours with favourable tumour-to-background contrast, which resulted in a higher detection rate of primary tumours than did [18F] FDG PET/CT (98.2% vs. 82.1%, P = 0.021). Meanwhile, [68Ga]Ga-DOTA-FAPI-04 PET/CT showed a better sensitivity than [18F] FDG PET/CT in the detection of lymph nodes (86.4% vs. 45.5%, P = 0.004) and bone and visceral metastases (83.8% vs. 59.5%, P = 0.004). [68Ga]Ga-DOTA-FAPI-04 PET/CT showed a superior diagnostic efficacy than [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer, especially in identifying liver metastases, peritoneal carcinomatosis, and brain tumours.

316 citations

Journal ArticleDOI
TL;DR: The recent advances of intelligent cancer nanomedicine are demonstrated, and the comprehensive understanding of their structure-function relationship for smart and efficient cancer nanotechine including various imaging and therapeutic applications, as well as nanotoxicity is discussed.
Abstract: Precise nanomedicine has been extensively explored for efficient cancer imaging and targeted cancer therapy, as evidenced by a few breakthroughs in their preclinical and clinical explorations. Here, we demonstrate the recent advances of intelligent cancer nanomedicine, and discuss the comprehensive understanding of their structure-function relationship for smart and efficient cancer nanomedicine including various imaging and therapeutic applications, as well as nanotoxicity. In particular, a few emerging strategies that have advanced cancer nanomedicine are also highlighted as the emerging focus such as tumor imprisonment, supramolecular chemotherapy, and DNA nanorobot. The challenge and outlook of some scientific and engineering issues are also discussed in future development. We wish to highlight these new progress of precise nanomedicine with the ultimate goal to inspire more successful explorations of intelligent nanoparticles for future clinical translations.

316 citations

Journal ArticleDOI
TL;DR: Recent advancements that have identified the molecular mechanisms that underlie necroptosis are summarized and the mechanisms that regulate the interplay between apoptosis and necroPTosis are explored.
Abstract: Programmed cell death is essential for the development and maintenance of the immune system and its responses to exogenous and endogenous stimuli. Studies have demonstrated that in addition to caspase-dependent apoptosis, necrosis dependent on the kinases RIP1 and RIP3 (also called necroptosis) is a major programmed cell-death pathway in development and immunity. These two programmed cell-death pathways may suppress each other, and necroptosis also serves as an alternative when caspase-dependent apoptosis is inhibited or absent. Here we summarize recent advancements that have identified the molecular mechanisms that underlie necroptosis and explore the mechanisms that regulate the interplay between apoptosis and necroptosis.

316 citations


Authors

Showing all 50945 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Lei Jiang1702244135205
Yang Gao1682047146301
William A. Goddard1511653123322
Rui Zhang1512625107917
Xiaoyuan Chen14999489870
Fuqiang Wang145151895014
Galen D. Stucky144958101796
Shu-Hong Yu14479970853
Wei Huang139241793522
Bin Liu138218187085
Jie Liu131153168891
Han Zhang13097058863
Lei Zhang130231286950
Jian Zhou128300791402
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

University of Science and Technology of China
101K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023248
2022943
20216,784
20205,710
20194,982
20184,057