scispace - formally typeset
Search or ask a question
Institution

Xiamen University

EducationAmoy, Fujian, China
About: Xiamen University is a education organization based out in Amoy, Fujian, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 50472 authors who have published 54480 publications receiving 1058239 citations. The organization is also known as: Amoy University & Xiàmén Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that mesenchymal remodeling as an overarching role for the matricellular protein periostin, across physiology and disease, is proposed.
Abstract: Periostin, also termed osteoblast-specific factor 2, is a matricellular protein with known functions in osteology, tissue repair, oncology, cardiovascular and respiratory systems, and in various inflammatory settings. However, most of the research to date has been conducted in divergent and circumscribed areas meaning that the overall understanding of this intriguing molecule remains fragmented. Here, we integrate the available evidence on periostin expression, its normal role in development, and whether it plays a similar function during pathologic repair, regeneration, and disease in order to bring together the different research fields in which periostin investigations are ongoing. In spite of the seemingly disparate roles of periostin in health and disease, tissue remodeling as a response to insult/injury is emerging as a common functional denominator of this matricellular molecule. Periostin is transiently upregulated during cell fate changes, either physiologic or pathologic. Combining observations from various conditions, a common pattern of events can be suggested, including periostin localization during development, insult and injury, epithelial–mesenchymal transition, extracellular matrix restructuring, and remodeling. We propose mesenchymal remodeling as an overarching role for the matricellular protein periostin, across physiology and disease. Periostin may be seen as an important structural mediator, balancing appropriate versus inappropriate tissue adaption in response to insult/injury.

311 citations

Journal ArticleDOI
18 Feb 2016-ACS Nano
TL;DR: The results demonstrate that the bioinspired multifunctional CuS-Fn NCs have potential as clinically translatable cancer theranostics and could provide a noninvasive, highly sensitive, and quantitative in vivo guiding method for cancer photothermal therapies in experimental and clinical settings.
Abstract: It is essential to control the size and morphology of nanoparticles strictly in nanomedicine. Protein cages offer significant potential for templated synthesis of inorganic nanoparticles. In this study, we successfully synthesized ultrasmall copper sulfide (CuS) nanoparticles inside the cavity of ferritin (Fn) nanocages by a biomimetic synthesis method. The uniform CuS–Fn nanocages (CuS–Fn NCs) showed strong near-infrared absorbance and high photothermal conversion efficiency. In quantitative ratiometric photoacoustic imaging (PAI), the CuS–Fn NCs exhibited superior photoacoustic tomography improvements for real-time in vivo PAI of entire tumors. With the incorporation of radionuclide 64Cu, 64CuS–Fn NCs also served as an excellent PET imaging agent with higher tumor accumulation compared to free copper. Following the guidance of PAI and PET, CuS–Fn NCs were applied in photothermal therapy to achieve superior cancer therapeutic efficiency with good biocompatibility both in vitro and in vivo. The results de...

311 citations

Journal ArticleDOI
TL;DR: One-pot biogenic fabrication of palladium nanoparticles by a simple procedure using broth of Cinnamomum camphora leaf without extra surfactant, capping agent, and/or template was reported in this article.
Abstract: The development of dependable, environmentally benign processes for the synthesis of nanoscale materials is an important aspect of nanotechnology. In the present study, we report one-pot biogenic fabrication of palladium nanoparticles by a simple procedure using broth of Cinnamomum camphora leaf without extra surfactant, capping agent, and/or template. The mean size of palladium nanoparticles, ranging from 3.2 to 6.0 nm, could be facilely controlled by merely varying the initial concentration of the palladium ions. The polyols components and the heterocyclic components were believed to be responsible for the reduction of palladium ions and the stabilization of palladium nanoparticles, respectively.

311 citations

Journal ArticleDOI
Zhi-You Zhou1, Zhi-Zhong Huang1, De-Jun Chen1, Qiang Wang1, Na Tian1, Shi-Gang Sun1 
TL;DR: This research paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, as to provide real-time information about concrete mechanical properties such as E-modulus and compressive strength.
Abstract: NSFC [20873113, 20833005, 20933004]; MOST [2007DFA40890]; Research Fund [200803841035]; Fujian Provincial Department of Science and Technology [2008F3099, 200810025]

311 citations

Journal ArticleDOI
14 Jun 2013-ACS Nano
TL;DR: This work developed a TENG designed for harvesting tiny-scale wind energy available in the authors' normal living environment using conventional materials and can be extended for harvesting energy from ocean current, making nanotechnology reaching their daily life a possibility in the near future.
Abstract: Harvesting mechanical energy is becoming increasingly important for its availability and abundance in our living environment. Triboelectric nanogenerator (TENG) is a simple, cost-effective, and highly efficient approach for generating electricity from mechanical energies in a wide range of forms. Here, we developed a TENG designed for harvesting tiny-scale wind energy available in our normal living environment using conventional materials. The energy harvester is based on a rotary driven mechanical deformation of multiple plate-based TENGs. The operation mechanism is a hybridization of the contact-sliding-separation-contact processes by using the triboelectrification and electrostatic induction effects. With the introduction of polymer nanowires on surfaces, the rotary TENG delivers an open-circuit voltage of 250 V and a short-circuit current of 0.25 mA, corresponding to a maximum power density of ∼39 W/m2 at a wind speed of ∼15 m/s, which is capable of directly driving hundreds of electronic devices such...

311 citations


Authors

Showing all 50945 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Lei Jiang1702244135205
Yang Gao1682047146301
William A. Goddard1511653123322
Rui Zhang1512625107917
Xiaoyuan Chen14999489870
Fuqiang Wang145151895014
Galen D. Stucky144958101796
Shu-Hong Yu14479970853
Wei Huang139241793522
Bin Liu138218187085
Jie Liu131153168891
Han Zhang13097058863
Lei Zhang130231286950
Jian Zhou128300791402
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

University of Science and Technology of China
101K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023248
2022943
20216,784
20205,710
20194,982
20184,057