scispace - formally typeset
Search or ask a question
Institution

Xiamen University

EducationAmoy, Fujian, China
About: Xiamen University is a education organization based out in Amoy, Fujian, China. It is known for research contribution in the topics: Catalysis & Population. The organization has 50472 authors who have published 54480 publications receiving 1058239 citations. The organization is also known as: Amoy University & Xiàmén Dàxué.


Papers
More filters
Journal ArticleDOI
Binghui Wu1, Huaqi Huang1, Jing Yang1, Nanfeng Zheng1, Gang Fu1 
TL;DR: More Greasy, more selective: amine-capped Pt(3)Co nanocatalysts were synthesized and used for the hydrogenation of cinnamaldehyde (CAL), in which high selectivity towards C=O hydrogenation can be achieved.
Abstract: 通讯作者地址: Zheng, NF (通讯作者),Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China 地址: 1. Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China 2. Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, Xiamen 361005, Peoples R China 电子邮件地址: nfzheng@xmu.edu.cn; gfu@xmu.edu.cn

268 citations

Journal ArticleDOI
TL;DR: In this article, the ionic thermoelectric supercapacitor (ITESC) is charged under a temperature gradient, and the stored electrical energy can be delivered to an external circuit.
Abstract: Temperature gradients are generated by the sun and a vast array of technologies and can induce molecular concentration gradients in solutions via thermodiffusion (Soret effect). For ions, this leads to a thermovoltage that is determined by the thermal gradient ΔT across the electrolyte, together with the ionic Seebeck coefficient αi. So far, redox-free electrolytes have been poorly explored in thermoelectric applications due to a lack of strategies to harvest the energy from the Soret effect. Here, we report the conversion of heat into stored charge via a remarkably strong ionic Soret effect in a polymeric electrolyte (Seebeck coefficients as high as αi = 10 mV K−1). The ionic thermoelectric supercapacitor (ITESC) is charged under a temperature gradient. After the temperature gradient is removed, the stored electrical energy can be delivered to an external circuit. This new means to harvest energy is particularly suitable for intermittent heat sources like the sun. We show that the stored electrical energy of the ITESC is proportional to (ΔTαi)2. The resulting ITESC can convert and store several thousand times more energy compared with a traditional thermoelectric generator connected in series with a supercapacitor.

268 citations

Journal ArticleDOI
TL;DR: In this article, a 3D interconnected ZnF2 matrix is designed on the surface of Zn foil (Zn@ZnF 2 ) through a simple and fast anodic growth method, serving as a multifunctional protective layer.
Abstract: Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However, the low Coulombic efficiency and limited lifespan of Zn metal anodes resulting from uncontrollable growth of Zn dendrites impede their practical application. In this work, a 3D interconnected ZnF2 matrix is designed on the surface of Zn foil (Zn@ZnF2 ) through a simple and fast anodic growth method, serving as a multifunctional protective layer. The as-fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics. The results reveal that the Zn@ZnF2 electrode can effectively inhibit dendrites growth, restrain the hydrogen evolution reactions, and endow excellent plating/stripping reversibility. Accordingly, the Zn@ZnF2 electrode exhibits a long cycle life of over 800 h at 1 mA cm-2 with a capacity of 1.0 mAh cm-2 in a symmetrical cell test, the feasibility of which is also convincing in Zn@ZnF2 //MnO2 and Zn@ZnF2 //V2 O5 full batteries. Importantly, a hybrid zinc-ion capacitor of the Zn@ZnF2 //AC can work at an ultrahigh current density of ≈60 mA cm-2 for up to 5000 cycles with a high capacity retention of 92.8%.

267 citations

Journal ArticleDOI
TL;DR: This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities.
Abstract: Metal-organic layers (MOLs) represent an emerging class of tunable and functionalizable two-dimensional materials. In this work, the scalable solvothermal synthesis of self-supporting MOLs composed of [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and benzene-1,3,5-tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4'-(4-benzoate)-(2,2',2''-terpyridine)-5,5''-dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single-site solid catalysts for the hydrosilylation of terminal olefins. MOL-based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal-organic frameworks. This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities.

267 citations

Journal ArticleDOI
TL;DR: The new theranostic platform based on biocompatible poly(acrylic acid) (PAA)-Co9 Se8 nanoplates shows pH-responsive chemotherapy and enables the combination of photothermal therapy and chemotherapy to receive superior antitumor efficacy.
Abstract: A new theranostic platform is developed based on biocompatible poly(acrylic acid) (PAA)-Co9 Se8 nanoplates. These PAA-Co9 Se8 nanoplates are successfully utilized for photoacoustic imaging (PAI)/magnetic resonance imaging (MRI) dual-modal imaging. Moreover, the PAA-Co9 Se8 -DOX shows pH-responsive chemotherapy and enables the combination of photothermal therapy and chemotherapy to receive superior antitumor efficacy. This work promises further exploration of 2D nanoplatforms for theranostic applications.

267 citations


Authors

Showing all 50945 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Lei Jiang1702244135205
Yang Gao1682047146301
William A. Goddard1511653123322
Rui Zhang1512625107917
Xiaoyuan Chen14999489870
Fuqiang Wang145151895014
Galen D. Stucky144958101796
Shu-Hong Yu14479970853
Wei Huang139241793522
Bin Liu138218187085
Jie Liu131153168891
Han Zhang13097058863
Lei Zhang130231286950
Jian Zhou128300791402
Network Information
Related Institutions (5)
Nanjing University
105.5K papers, 2.2M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Fudan University
117.9K papers, 2.6M citations

94% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

93% related

University of Science and Technology of China
101K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023248
2022942
20216,782
20205,710
20194,982
20184,057