scispace - formally typeset
Search or ask a question
Institution

Xidian University

EducationXi'an, China
About: Xidian University is a education organization based out in Xi'an, China. It is known for research contribution in the topics: Antenna (radio) & Synthetic aperture radar. The organization has 32099 authors who have published 38961 publications receiving 431820 citations. The organization is also known as: University of Electronic Science and Technology at Xi'an & Xīān Diànzǐ Kējì Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array, and possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are provided and verified by numerical simulation.
Abstract: High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation.

96 citations

Journal ArticleDOI
TL;DR: A method to imitate the metaplasticity inhibition of long-term potentiation (MILTP) for the first time based on memristors is proposed and verified by three different memristor devices including oxide-based resistive memory (OxRAM), interface switchingrandom access memory, and conductive bridging random access memory (CBRAM).
Abstract: Neuromorphic engineering is a promising technology for developing new computing systems owing to the low-power operation and the massive parallelism similarity to the human brain. Optimal function of neuronal networks requires interplay between rapid forms of Hebbian plasticity and homeostatic mechanisms that adjust the threshold for plasticity, termed metaplasticity. Metaplasticity has important implications in synapses and is barely addressed in neuromorphic devices. An understanding of metaplasticity might yield new insights into how the modification of synapses is regulated and how information is stored by synapses in the brain. Here, we propose a method to imitate the metaplasticity inhibition of long-term potentiation (MILTP) for the first time based on memristors. In addition, the metaplasticity facilitation of long-term potentiation (MFLTP) and the metaplasticity facilitation of long-term depression (MFLTD) are also achieved. Moreover, the mechanisms of metaplasticity in memristors are discussed. Additionally, the proposed method to mimic the metaplasticity is verified by three different memristor devices including oxide-based resistive memory (OxRAM), interface switching random access memory, and conductive bridging random access memory (CBRAM). This is a further step toward developing fully bio-realistic artificial synapses using memristors. The findings in this study will deepen our understanding of metaplasticity, as well as provide new insight into bio-realistic neuromorphic engineering.

95 citations

Journal ArticleDOI
TL;DR: Comprehensive evaluations conducted on three representative cross-modal benchmark datasets illustrate the novel deep hashing method named Multi-Task Consistency-Preserving Adversarial Hashing (CPAH) is superior to the state-of-the-art cross- modal hashing methods.
Abstract: Owing to the advantages of low storage cost and high query efficiency, cross-modal hashing has received increasing attention recently. As failing to bridge the inherent modality gap between modalities, most existing cross-modal hashing methods have limited capability to explore the semantic consistency information between different modality data, leading to unsatisfactory search performance. To address this problem, we propose a novel deep hashing method named Multi-Task C onsistency- P reserving A dversarial H ashing (CPAH) to fully explore the semantic consistency and correlation between different modalities for efficient cross-modal retrieval. First, we design a consistency refined module (CR) to divide the representations of different modality into two irrelevant parts, i.e ., modality-common and modality-private representations. Then, a multi-task adversarial learning module (MA) is presented, which can make the modality-common representation of different modalities close to each other on feature distribution and semantic consistency. Finally, the compact and powerful hash codes can be generated from modality-common representation. Comprehensive evaluations conducted on three representative cross-modal benchmark datasets illustrate our method is superior to the state-of-the-art cross-modal hashing methods.

95 citations

Journal ArticleDOI
TL;DR: Both 2D and 3D radiomics signature have favorable prognosis, but 3D signature had a better performance, which further improved the predicted accuracy of survival prognosis for the patients with NSCLC.
Abstract: The aim of this study was to develop a radiomics nomogram by combining the optimized radiomics signatures extracted from 2D and/or 3D CT images and clinical predictors to assess the overall survival of patients with non-small cell lung cancer (NSCLC). One training cohort of 239 and two validation datasets of 80 and 52 NSCLC patients were enrolled in this study. Nine hundred seventy-five radiomics features were extracted from each patient’s 2D and 3D CT images. Least absolute shrinkage and selection operator (LASSO) regression was used to select features and generate a radiomics signature. Cox hazard survival analysis and Kaplan-Meier were performed in both cohorts. The radiomics nomogram was developed by integrating the optimized radiomics signature and clinical predictors, its calibration and discrimination were evaluated. The radiomics signatures were significantly associated with NSCLC patients’ survival time. The signature derived from the combined 2D and 3D features showed a better prognostic performance than those from 2D or 3D alone. Our radiomics nomogram integrated the optimal radiomics signature with clinical predictors showed a significant improvement in the prediction of patients’ survival compared with clinical predictors alone in the validation cohort. The calibration curve showed predicted survival time was very close to the actual one. The radiomics signature from the combined 2D and 3D features further improved the predicted accuracy of survival prognosis for the patients with NSCLC. Combination of the optimal radiomics signature and clinical predictors performed better for individualied survival prognosis estimation in patients with NSCLC. These findings might affect trearment strategies and enable a step forward for precise medicine. • We found both 2D and 3D radiomics signature have favorable prognosis, but 3D signature had a better performance. • The radiomics signature generated from the combined 2D and 3D features had a better predictive performance than those from 2D or 3D features. • Integrating the optimal radiomics signature with clinical predictors significantly improved the predictive power in patients’ survival compared with clinical TNM staging alone.

95 citations

Journal ArticleDOI
TL;DR: A novel and secure plaintext-related image encryption scheme is given in this paper using hyper-chaotic Lorenz system and hash function, which performs excellently on resisting the known-plaintext attack.
Abstract: A novel and secure plaintext-related image encryption scheme is given in this paper using hyper-chaotic Lorenz system and hash function. In our scheme, we used the classical encryption architecture: permutation and diffusion. The initial conditions of hyper-chaotic Lorenz system which is employed in permutation and key stream generation algorithms are generated by information of the original image and initial key. Therefore, the encryption process has a strong relationship with plain image in the proposed scheme. So, our work performs excellently on resisting the known-plaintext attack. In addition, results of many widely used security analyses and comparisons with other works show that our work has outstanding security performance for the digital image communication.

95 citations


Authors

Showing all 32362 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Jie Zhang1784857221720
Bin Wang126222674364
Huijun Gao12168544399
Hong Wang110163351811
Jian Zhang107306469715
Guozhong Cao10469441625
Lajos Hanzo101204054380
Witold Pedrycz101176658203
Lei Liu98204151163
Qi Tian96103041010
Wei Liu96153842459
MengChu Zhou96112436969
Chunying Chen9450830110
Daniel W. C. Ho8536021429
Network Information
Related Institutions (5)
Beihang University
73.5K papers, 975.6K citations

92% related

Southeast University
79.4K papers, 1.1M citations

91% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

91% related

City University of Hong Kong
60.1K papers, 1.7M citations

90% related

Nanyang Technological University
112.8K papers, 3.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023117
2022529
20213,751
20203,816
20194,017
20183,382