scispace - formally typeset
Search or ask a question
Institution

Xuzhou Institute of Technology

EducationXuzhou, China
About: Xuzhou Institute of Technology is a education organization based out in Xuzhou, China. It is known for research contribution in the topics: Catalysis & Adsorption. The organization has 1696 authors who have published 1521 publications receiving 13541 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Surface configuration played the main role on these variables of contact displacement, contact load and coefficient of friction due to the direction and magnitude of the surface displacement while applied load and sliding velocity had a secondary role.
Abstract: Natural cartilage surfaces were macroscopically curved with multi-porous viscoelastic biologic materials with extremely high water, but whether curved surface configuration could play an important role on the contact and frictional properties of natural cartilages fails to be completely understood up to now. In this current study, cartilage samples came from the 18–24 month-old bovine femora. Contact characteristic and frictional properties at two cartilage configurations were investigated using the UMT-2 testing rig and the five-point sliding average method would be adopted to analyze these tested data. These results indicated the surface displacement was extremely associated with the plate cartilage surface and seemed to be a representative of cartilage surface configuration. The summit of the surface load lagged behind that of the surface displacement at the same condition. Coefficient of friction showed obviously different variation with time at two cartilage surface configurations due to the fact that these two surface displacements had different amplitudes and opposite directions as a function of the sliding length. Therefore, surface configuration played the main role on these variables of contact displacement, contact load and coefficient of friction due to the direction and magnitude of the surface displacement while applied load and sliding velocity had a secondary role. Natural cartilage surfaces were macroscopically curved with multi-porous viscoelastic biologic materials with extremely high water, but whether curved surface configuration could play an important role on the contact and frictional properties of natural cartilages fails to be completely understood up to now. In this study, two different cartilage configurations were adopted to investigate natural cartilage properties, and the five-point sliding average method would be used to analyze these tested data. These results indicated the contact displacement was consisted of cartilage deformation and surface displacement while contact load was composed of steady load and surface load (as shown in the figure, panels (a) and (b)). Surface displacement was greatly associated with the plate cartilage surface and seemed to be a representative of cartilage surface configuration. These two surface displacements had different amplitudes and opposite directions as a function of the sliding length (as shown in panel (c)). The summit of the surface load lagged behind that of the surface displacement at the same condition (as shown in panel (d)). Surface displacement and surface load in the contact characteristic of natural cartilages were extremely related with the cartilage configurations. and their correlation coefficients varied periodically with the moving time (as shown in panel (e)). Coefficient of friction showed obviously different variation with time (as shown in panel (f)). Therefore, surface configuration played the main role on these variables of contact displacement, contact load and coefficient of friction due to the direction and magnitude of the surface displacement while applied load and sliding velocity had a secondary role. Variation in contact and frictional properties of natural cartilage at two different surface configurations (a) Contact displacement and its parts varied with time; (b) Contact load and its parts varied with time; (c) Surface displacement varied with the sliding length at two CPSTs; (d) Surface load and surface displacement varied with time; (e) Variation in the relation coefficient with the moving time; (f) Coefficient of friction varied with time at two CPSTs.

6 citations

Proceedings ArticleDOI
24 Sep 2011
TL;DR: A new ontology is built that provides a simple schema that can be used to present a clear overview of network and the relation between sensing elements, which has been shown to be useful for describing heterogeneous networked sensing substrate and be feasible for allocating resources across various test beds.
Abstract: The practical usage of ontology for resource specification is for effective resource control in wireless sensor networks. In order to support geographically and logically distinct resources to be co-scheduled and co-allocated when test beds are federated, we build a new ontology. It provides a simple schema that can be used to present a clear overview of network and the relation between sensing elements. Our ontology has been actively integrated with the common-used control framework. The ontology also provides service abstraction between service providers and users, which defines generalized resource request for users to describe the desired resources on different test beds. It has been shown to be useful for describing heterogeneous networked sensing substrate and be feasible for allocating resources across various test beds.

6 citations

Journal ArticleDOI
TL;DR: In this paper, the authors performed dynamic Brazilian disc tests to study the mechanical behavior of sandstones and found that water saturation significantly weakens the dynamic tensile strength of sandstone and increases the specimen strain at which the specimen fails.
Abstract: Understanding the effect of water saturation on dynamic failure of rocks is of great importance to tunnel excavation at water-rich coal mines and prevention of rock bursts by water injection. Dynamic Brazilian disc tests are performed to study mechanical behaviour of sandstones in this paper. The results indicate that water saturation significantly weakens the dynamic tensile strength of sandstones and increases the specimen strain at which the specimen fails. The damage degree of sandstones reduces gradually with increasing water contents. Failure of the sandstone specimen includes the crack initiation at the center of the specimen, macroscopic crack propagation, and stretch of the macroscopic crack through the specimen. In addition, parallel macroscopic crack propagation is found in the specimen with a low water content. From the observation of fracture sections, microstructures are compact in the specimen with high water contents. This is due to the swell of the kaolinite in the specimen after water saturation. The failure mechanism of microstructures is typical brittle failure in the specimen with a high water content, whereas ductile fracture is found in the specimen with a low water content. Different failure processes of microstructures lead to the differences between mechanical properties and macroscopic failure characteristics of the specimens with various water contents.

6 citations

Journal ArticleDOI
TL;DR: The data suggested that PCB 156 could promote NAFLD development by altering the expression of genes related to lipid metabolism and inducing oxidative stress.

6 citations

Journal ArticleDOI
TL;DR: The results show that the state-of-charge estimation based on back-propagation neural network can achieve high accuracy in estimating state of charge of uninterruptible power system and can reduce the error accumulation caused in long-term operation.
Abstract: In this article, a method for estimating the state of charge of lithium battery based on back-propagation neural network is proposed and implemented for uninterruptible power system. First, back-pr...

6 citations


Authors

Showing all 1711 results

NameH-indexPapersCitations
Peng Wang108167254529
Qiong Wu5131612933
Wenping Cao341764093
Bin Hu302133121
Syed Abdul Rehman Khan291312733
Jingui Duan29933807
Vivian C.H. Wu251052566
Lei Chen16991062
Chao Wang1674741
Wenbin Gong1627953
Jing Li16401025
Chao Liu1543737
Qinglin Wang1472595
Yaocheng Zhang1454566
Chao Wang1325774
Network Information
Related Institutions (5)
Shandong University of Science and Technology
16.3K papers, 187.1K citations

81% related

Wuhan University of Science and Technology
11.8K papers, 125.9K citations

80% related

Nanjing Normal University
20.2K papers, 325K citations

79% related

Chongqing University
57.8K papers, 784.6K citations

78% related

Yangzhou University
22K papers, 321K citations

78% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
202228
2021328
2020181
2019121
201873