scispace - formally typeset
Search or ask a question
Institution

Xuzhou Medical College

EducationXuzhou, China
About: Xuzhou Medical College is a education organization based out in Xuzhou, China. It is known for research contribution in the topics: Cell growth & Apoptosis. The organization has 12721 authors who have published 7802 publications receiving 102970 citations.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured reactive oxygen species (ROS) in the mitochondria of Sprague-Dawley rat heart and corresponding submitochondrial particles using the amplex red assay.

1,406 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: The mechanisms and molecular bases of ceRNA networks are introduced, their roles in the pathogenesis of cancer as well as methods of predicting and validating ceRNA interplay are discussed and the possibilities of ceRNAs as diagnostic biomarkers or therapeutic targets are envisioned.
Abstract: Competing endogenous RNAs (ceRNAs) are transcripts that can regulate each other at post-transcription level by competing for shared miRNAs. CeRNA networks link the function of protein-coding mRNAs with that of non-coding RNAs such as microRNA, long non-coding RNA, pseudogenic RNA and circular RNA. Given that any transcripts harbouring miRNA response element can theoretically function as ceRNAs, they may represent a widespread form of post-transcriptional regulation of gene expression in both physiology and pathology. CeRNA activity is influenced by multiple factors such as the abundance and subcellular localisation of ceRNA components, binding affinity of miRNAs to their sponges, RNA editing, RNA secondary structures and RNA-binding proteins. Aberrations in these factors may deregulate ceRNA networks and thus lead to human diseases including cancer. In this review, we introduce the mechanisms and molecular bases of ceRNA networks, discuss their roles in the pathogenesis of cancer as well as methods of predicting and validating ceRNA interplay. At last, we discuss the limitations of current ceRNA theory, propose possible directions and envision the possibilities of ceRNAs as diagnostic biomarkers or therapeutic targets.

895 citations

Journal ArticleDOI
TL;DR: In this paper, a rat model was presented in which showed that high intravenous epinephrine, but not norepinephrine, bolus produces the characteristic reversible apical depression of myocardial contraction coupled with basal hypercontractility.
Abstract: Background—Takotsubo cardiomyopathy is an acute heart failure syndrome characterized by myocardial hypocontractility from the mid left ventricle to the apex. It is precipitated by extreme stress and can be triggered by intravenous catecholamine administration, particularly epinephrine. Despite its grave presentation, Takotsubo cardiomyopathy is rapidly reversible, with generally good prognosis. We hypothesized that this represents switching of epinephrine signaling through the pleiotropic β2-adrenergic receptor (β2AR) from canonical stimulatory G-protein–activated cardiostimulant to inhibitory G-protein–activated cardiodepressant pathways. Methods and Results—We describe an in vivo rat model in which a high intravenous epinephrine, but not norepinephrine, bolus produces the characteristic reversible apical depression of myocardial contraction coupled with basal hypercontractility. The effect is prevented via Gi inactivation by pertussis toxin pretreatment. β2AR number and functional responses were greater...

600 citations


Authors

Showing all 12775 results

NameH-indexPapersCitations
Liang Wang98171845600
Chang Liu97109939573
Wei Wang95354459660
Yu Liu66126220577
Deling Kong6538816515
Zhimou Yang6122212522
Xu-Feng Huang6133213074
Guangming Lu6047613218
Dan Ding5921212494
Jian Cao5848611074
Yuanjin Zhao5732812076
Jie Yang5648811382
Lei Wang54107615189
Xiaodong Shi523238910
Wei Pan504089037
Network Information
Related Institutions (5)
Nanjing Medical University
37.9K papers, 635.8K citations

94% related

Fourth Military Medical University
20.7K papers, 425.5K citations

92% related

Second Military Medical University
20.4K papers, 449.4K citations

91% related

Peking Union Medical College
61.8K papers, 1.1M citations

89% related

Capital Medical University
47.2K papers, 811.2K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202324
202288
20211,401
20201,226
2019936
2018769