Institution
Yahoo!
Company•London, United Kingdom•
About: Yahoo! is a(n) company organization based out in London, United Kingdom. It is known for research contribution in the topic(s): Population & Web search query. The organization has 26749 authors who have published 29915 publication(s) receiving 732583 citation(s). The organization is also known as: Yahoo! Inc. & Maudwen-Yahoo! Inc.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: As the Netflix Prize competition has demonstrated, matrix factorization models are superior to classic nearest neighbor techniques for producing product recommendations, allowing the incorporation of additional information such as implicit feedback, temporal effects, and confidence levels.
Abstract: As the Netflix Prize competition has demonstrated, matrix factorization models are superior to classic nearest neighbor techniques for producing product recommendations, allowing the incorporation of additional information such as implicit feedback, temporal effects, and confidence levels
7,690 citations
Book•
[...]
TL;DR: This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems and focuses on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis.
Abstract: An important part of our information-gathering behavior has always been to find out what other people think. With the growing availability and popularity of opinion-rich resources such as online review sites and personal blogs, new opportunities and challenges arise as people now can, and do, actively use information technologies to seek out and understand the opinions of others. The sudden eruption of activity in the area of opinion mining and sentiment analysis, which deals with the computational treatment of opinion, sentiment, and subjectivity in text, has thus occurred at least in part as a direct response to the surge of interest in new systems that deal directly with opinions as a first-class object.
This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems. Our focus is on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis. We include material on summarization of evaluative text and on broader issues regarding privacy, manipulation, and economic impact that the development of opinion-oriented information-access services gives rise to. To facilitate future work, a discussion of available resources, benchmark datasets, and evaluation campaigns is also provided.
7,180 citations
[...]
TL;DR: The architecture of HDFS is described and experience using HDFS to manage 25 petabytes of enterprise data at Yahoo! is reported on.
Abstract: The Hadoop Distributed File System (HDFS) is designed to store very large data sets reliably, and to stream those data sets at high bandwidth to user applications. In a large cluster, thousands of servers both host directly attached storage and execute user application tasks. By distributing storage and computation across many servers, the resource can grow with demand while remaining economical at every size. We describe the architecture of HDFS and report on experience using HDFS to manage 25 petabytes of enterprise data at Yahoo!.
4,572 citations
[...]
TL;DR: A new statistical explanation of MaxEnt is described, showing that the model minimizes the relative entropy between two probability densities defined in covariate space, which is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts.
Abstract: MaxEnt is a program for modelling species distributions from presence-only species records. This paper is written for ecologists and describes the MaxEnt model from a statistical perspective, making explicit links between the structure of the model, decisions required in producing a modelled distribution, and knowledge about the species and the data that might affect those decisions. To begin we discuss the characteristics of presence-only data, highlighting implications for modelling distributions. We particularly focus on the problems of sample bias and lack of information on species prevalence. The keystone of the paper is a new statistical explanation of MaxEnt which shows that the model minimizes the relative entropy between two probability densities (one estimated from the presence data and one, from the landscape) defined in covariate space. For many users, this viewpoint is likely to be a more accessible way to understand the model than previous ones that rely on machine learning concepts. We then step through a detailed explanation of MaxEnt describing key components (e.g. covariates and features, and definition of the landscape extent), the mechanics of model fitting (e.g. feature selection, constraints and regularization) and outputs. Using case studies for a Banksia species native to south-west Australia and a riverine fish, we fit models and interpret them, exploring why certain choices affect the result and what this means. The fish example illustrates use of the model with vector data for linear river segments rather than raster (gridded) data. Appropriate treatments for survey bias, unprojected data, locally restricted species, and predicting to environments outside the range of the training data are demonstrated, and new capabilities discussed. Online appendices include additional details of the model and the mathematical links between previous explanations and this one, example code and data, and further information on the case studies.
3,724 citations
[...]
TL;DR: The standard similarity measure based on untransformed indices is shown to give misleading results, but transforming the indices or entropies to effective numbers of species produces a stable, easily interpreted, sensitive general similarity measure.
Abstract: Entropies such as the Shannon–Wiener and Gini–Simpson indices are not themselves diversities. Conversion of these to effective number of species is the key to a unified and intuitive interpretation of diversity. Effective numbers of species derived from standard diversity indices share a common set of intuitive mathematical properties and behave as one would expect of a diversity, while raw indices do not. Contrary to Keylock, the lack of concavity of effective numbers of species is irrelevant as long as they are used as transformations of concave alpha, beta, and gamma entropies. The practical importance of this transformation is demonstrated by applying it to a popular community similarity measure based on raw diversity indices or entropies. The standard similarity measure based on untransformed indices is shown to give misleading results, but transforming the indices or entropies to effective numbers of species produces a stable, easily interpreted, sensitive general similarity measure. General overlap measures derived from this transformed similarity measure yield the Jaccard index, Sorensen index, Horn index of overlap, and the Morisita–Horn index as special cases.
3,006 citations
Authors
Showing all 26749 results
Name | H-index | Papers | Citations |
---|---|---|---|
Ashok Kumar | 151 | 5654 | 164086 |
Alexander J. Smola | 122 | 434 | 110222 |
Howard I. Maibach | 116 | 1821 | 60765 |
Sanjay Jain | 103 | 881 | 46880 |
Amirhossein Sahebkar | 100 | 1307 | 46132 |
Marc Davis | 99 | 412 | 50243 |
Wenjun Zhang | 96 | 976 | 38530 |
Jian Xu | 94 | 1366 | 52057 |
Fortunato Ciardiello | 94 | 695 | 47352 |
Tong Zhang | 93 | 414 | 36519 |
Michael E. J. Lean | 92 | 411 | 30939 |
Ashish K. Jha | 87 | 503 | 30020 |
Xin Zhang | 87 | 1714 | 40102 |
Theunis Piersma | 86 | 632 | 34201 |
George Varghese | 84 | 253 | 28598 |