scispace - formally typeset
Search or ask a question
Institution

Yahoo!

CompanyLondon, United Kingdom
About: Yahoo! is a company organization based out in London, United Kingdom. It is known for research contribution in the topics: Population & Web search query. The organization has 26749 authors who have published 29915 publications receiving 732583 citations. The organization is also known as: Yahoo! Inc. & Maudwen-Yahoo! Inc.


Papers
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: A conditional random field model that reasons about possible groundings of scene graphs to test images and shows that the full model can be used to improve object localization compared to baseline methods and outperforms retrieval methods that use only objects or low-level image features.
Abstract: This paper develops a novel framework for semantic image retrieval based on the notion of a scene graph. Our scene graphs represent objects (“man”, “boat”), attributes of objects (“boat is white”) and relationships between objects (“man standing on boat”). We use these scene graphs as queries to retrieve semantically related images. To this end, we design a conditional random field model that reasons about possible groundings of scene graphs to test images. The likelihoods of these groundings are used as ranking scores for retrieval. We introduce a novel dataset of 5,000 human-generated scene graphs grounded to images and use this dataset to evaluate our method for image retrieval. In particular, we evaluate retrieval using full scene graphs and small scene subgraphs, and show that our method outperforms retrieval methods that use only objects or low-level image features. In addition, we show that our full model can be used to improve object localization compared to baseline methods.

1,006 citations

Proceedings ArticleDOI
21 Apr 2008
TL;DR: It is found that a generative model, in which new edges are added via an iterative "forest fire" burning process, is able to produce graphs exhibiting a network community structure similar to that observed in nearly every network dataset examined.
Abstract: A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structural properties of such sets of nodes. We define the network community profile plot, which characterizes the "best" possible community - according to the conductance measure - over a wide range of size scales, and we study over 70 large sparse real-world networks taken from a wide range of application domains. Our results suggest a significantly more refined picture of community structure in large real-world networks than has been appreciated previously.Our most striking finding is that in nearly every network dataset we examined, we observe tight but almost trivial communities at very small scales, and at larger size scales, the best possible communities gradually "blend in" with the rest of the network and thus become less "community-like." This behavior is not explained, even at a qualitative level, by any of the commonly-used network generation models. Moreover, this behavior is exactly the opposite of what one would expect based on experience with and intuition from expander graphs, from graphs that are well-embeddable in a low-dimensional structure, and from small social networks that have served as testbeds of community detection algorithms. We have found, however, that a generative model, in which new edges are added via an iterative "forest fire" burning process, is able to produce graphs exhibiting a network community structure similar to our observations.

999 citations

Proceedings ArticleDOI
22 Aug 2006
TL;DR: A model of tagging systems, specifically in the context of web-based systems, is offered to help illustrate the possible benefits of these tools and a simple taxonomy of incentives and contribution models is provided to inform potential evaluative frameworks.
Abstract: In recent years, tagging systems have become increasingly popular. These systems enable users to add keywords (i.e., "tags") to Internet resources (e.g., web pages, images, videos) without relying on a controlled vocabulary. Tagging systems have the potential to improve search, spam detection, reputation systems, and personal organization while introducing new modalities of social communication and opportunities for data mining. This potential is largely due to the social structure that underlies many of the current systems.Despite the rapid expansion of applications that support tagging of resources, tagging systems are still not well studied or understood. In this paper, we provide a short description of the academic related work to date. We offer a model of tagging systems, specifically in the context of web-based systems, to help us illustrate the possible benefits of these tools. Since many such systems already exist, we provide a taxonomy of tagging systems to help inform their analysis and design, and thus enable researchers to frame and compare evidence for the sustainability of such systems. We also provide a simple taxonomy of incentives and contribution models to inform potential evaluative frameworks. While this work does not present comprehensive empirical results, we present a preliminary study of the photo-sharing and tagging system Flickr to demonstrate our model and explore some of the issues in one sample system. This analysis helps us outline and motivate possible future directions of research in tagging systems.

993 citations

Patent
11 Feb 2008
TL;DR: In this paper, methods and apparatus are described for detecting social relationships across multiple networks and/or communication channels, which can then be used in a wide variety of ways to support and enhance a broad range of user services.
Abstract: Methods and apparatus are described for detecting social relationships across multiple networks and/or communication channels. These social relationships may then be utilized in a wide variety of ways to support and enhance a broad range of user services.

993 citations

Proceedings ArticleDOI
13 Dec 2010
TL;DR: The architecture resembles the Actors model, providing semantics of encapsulation and location transparency, thus allowing applications to be massively concurrent while exposing a simple programming interface to application developers.
Abstract: S4 is a general-purpose, distributed, scalable, partially fault-tolerant, pluggable platform that allows programmers to easily develop applications for processing continuous unbounded streams of data. Keyed data events are routed with affinity to Processing Elements (PEs), which consume the events and do one or both of the following: (1) emit one or more events which may be consumed by other PEs, (2) publish results. The architecture resembles the Actors model, providing semantics of encapsulation and location transparency, thus allowing applications to be massively concurrent while exposing a simple programming interface to application developers. In this paper, we outline the S4 architecture in detail, describe various applications, including real-life deployments. Our design is primarily driven by large scale applications for data mining and machine learning in a production environment. We show that the S4 design is surprisingly flexible and lends itself to run in large clusters built with commodity hardware.

972 citations


Authors

Showing all 26766 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Alexander J. Smola122434110222
Howard I. Maibach116182160765
Sanjay Jain10388146880
Amirhossein Sahebkar100130746132
Marc Davis9941250243
Wenjun Zhang9697638530
Jian Xu94136652057
Fortunato Ciardiello9469547352
Tong Zhang9341436519
Michael E. J. Lean9241130939
Ashish K. Jha8750330020
Xin Zhang87171440102
Theunis Piersma8663234201
George Varghese8425328598
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

85% related

University of California, San Diego
204.5K papers, 12.3M citations

85% related

University College London
210.6K papers, 9.8M citations

84% related

Cornell University
235.5K papers, 12.2M citations

84% related

University of Washington
305.5K papers, 17.7M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
202247
20211,088
20201,074
20191,568
20181,352