scispace - formally typeset
Search or ask a question
Institution

Yahoo!

CompanyLondon, United Kingdom
About: Yahoo! is a company organization based out in London, United Kingdom. It is known for research contribution in the topics: Population & Web search query. The organization has 26749 authors who have published 29915 publications receiving 732583 citations. The organization is also known as: Yahoo! Inc. & Maudwen-Yahoo! Inc.


Papers
More filters
Proceedings ArticleDOI
21 Apr 2008
TL;DR: This paper proposes FacetNet, a novel framework for analyzing communities and their evolutions through a robust unified process, where communities not only generate evolutions, they also are regularized by the temporal smoothness of evolutions.
Abstract: We discover communities from social network data, and analyze the community evolution. These communities are inherent characteristics of human interaction in online social networks, as well as paper citation networks. Also, communities may evolve over time, due to changes to individuals' roles and social status in the network as well as changes to individuals' research interests. We present an innovative algorithm that deviates from the traditional two-step approach to analyze community evolutions. In the traditional approach, communities are first detected for each time slice, and then compared to determine correspondences. We argue that this approach is inappropriate in applications with noisy data. In this paper, we propose FacetNet for analyzing communities and their evolutions through a robust unified process. In this novel framework, communities not only generate evolutions, they also are regularized by the temporal smoothness of evolutions. As a result, this framework will discover communities that jointly maximize the fit to the observed data and the temporal evolution. Our approach relies on formulating the problem in terms of non-negative matrix factorization, where communities and their evolutions are factorized in a unified way. Then we develop an iterative algorithm, with proven low time complexity, which is guaranteed to converge to an optimal solution. We perform extensive experimental studies, on both synthetic datasets and real datasets, to demonstrate that our method discovers meaningful communities and provides additional insights not directly obtainable from traditional methods.

425 citations

Journal ArticleDOI
TL;DR: Empirical applications of lp-norm MKL to three real-world problems from computational biology show that non-sparse MKL achieves accuracies that surpass the state-of-the-art, and two efficient interleaved optimization strategies for arbitrary norms are developed.
Abstract: Learning linear combinations of multiple kernels is an appealing strategy when the right choice of features is unknown. Previous approaches to multiple kernel learning (MKL) promote sparse kernel combinations to support interpretability and scalability. Unfortunately, this l1-norm MKL is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we extend MKL to arbitrary norms. We devise new insights on the connection between several existing MKL formulations and develop two efficient interleaved optimization strategies for arbitrary norms, that is lp-norms with p ≥ 1. This interleaved optimization is much faster than the commonly used wrapper approaches, as demonstrated on several data sets. A theoretical analysis and an experiment on controlled artificial data shed light on the appropriateness of sparse, non-sparse and l∞-norm MKL in various scenarios. Importantly, empirical applications of lp-norm MKL to three real-world problems from computational biology show that non-sparse MKL achieves accuracies that surpass the state-of-the-art. Data sets, source code to reproduce the experiments, implementations of the algorithms, and further information are available at http://doc.ml.tu-berlin.de/nonsparse_mkl/.

423 citations

Journal ArticleDOI
TL;DR: It is found that standard natural language processing techniques can perform well for social streams on very focused topics, but novel techniques designed to mine the temporal distribution of concepts are needed to handle more heterogeneous streams containing multiple stories evolving in parallel.
Abstract: Online social and news media generate rich and timely information about real-world events of all kinds. However, the huge amount of data available, along with the breadth of the user base, requires a substantial effort of information filtering to successfully drill down to relevant topics and events. Trending topic detection is therefore a fundamental building block to monitor and summarize information originating from social sources. There are a wide variety of methods and variables and they greatly affect the quality of results. We compare six topic detection methods on three Twitter datasets related to major events, which differ in their time scale and topic churn rate. We observe how the nature of the event considered, the volume of activity over time, the sampling procedure and the pre-processing of the data all greatly affect the quality of detected topics, which also depends on the type of detection method used. We find that standard natural language processing techniques can perform well for social streams on very focused topics, but novel techniques designed to mine the temporal distribution of concepts are needed to handle more heterogeneous streams containing multiple stories evolving in parallel. One of the novel topic detection methods we propose, based on -grams cooccurrence and topic ranking, consistently achieves the best performance across all these conditions, thus being more reliable than other state-of-the-art techniques.

423 citations

Journal ArticleDOI
TL;DR: This paper presents a substantially generalized co-clustering framework wherein any Bregman divergence can be used in the objective function, and various conditional expectation based constraints can be considered based on the statistics that need to be preserved.
Abstract: Co-clustering, or simultaneous clustering of rows and columns of a two-dimensional data matrix, is rapidly becoming a powerful data analysis technique. Co-clustering has enjoyed wide success in varied application domains such as text clustering, gene-microarray analysis, natural language processing and image, speech and video analysis. In this paper, we introduce a partitional co-clustering formulation that is driven by the search for a good matrix approximation---every co-clustering is associated with an approximation of the original data matrix and the quality of co-clustering is determined by the approximation error. We allow the approximation error to be measured using a large class of loss functions called Bregman divergences that include squared Euclidean distance and KL-divergence as special cases. In addition, we permit multiple structurally different co-clustering schemes that preserve various linear statistics of the original data matrix. To accomplish the above tasks, we introduce a new minimum Bregman information (MBI) principle that simultaneously generalizes the maximum entropy and standard least squares principles, and leads to a matrix approximation that is optimal among all generalized additive models in a certain natural parameter space. Analysis based on this principle yields an elegant meta algorithm, special cases of which include most previously known alternate minimization based clustering algorithms such as kmeans and co-clustering algorithms such as information theoretic (Dhillon et al., 2003b) and minimum sum-squared residue co-clustering (Cho et al., 2004). To demonstrate the generality and flexibility of our co-clustering framework, we provide examples and empirical evidence on a variety of problem domains and also describe novel co-clustering applications such as missing value prediction and compression of categorical data matrices.

420 citations

Proceedings ArticleDOI
Lyndon Kennedy1, Mor Naaman1, Shane Ahern1, Rahul Nair1, Tye Rattenbury1 
29 Sep 2007
TL;DR: A location-tag-vision-based approach to retrieving images of geography-related landmarks and features from the Flickr dataset is demonstrated, suggesting that community-contributed media and annotation can enhance and improve access to multimedia resources - and the understanding of the world.
Abstract: The advent of media-sharing sites like Flickr and YouTube has drastically increased the volume of community-contributed multimedia resources available on the web These collections have a previously unimagined depth and breadth, and have generated new opportunities - and new challenges - to multimedia research How do we analyze, understand and extract patterns from these new collections? How can we use these unstructured, unrestricted community contributions of media (and annotation) to generate "knowledge" As a test case, we study Flickr - a popular photo sharing website Flickr supports photo, time and location metadata, as well as a light-weight annotation model We extract information from this dataset using two different approaches First, we employ a location-driven approach to generate aggregate knowledge in the form of "representative tags" for arbitrary areas in the world Second, we use a tag-driven approach to automatically extract place and event semantics for Flickr tags, based on each tag's metadata patterns With the patterns we extract from tags and metadata, vision algorithms can be employed with greater precision In particular, we demonstrate a location-tag-vision-based approach to retrieving images of geography-related landmarks and features from the Flickr dataset The results suggest that community-contributed media and annotation can enhance and improve our access to multimedia resources - and our understanding of the world

417 citations


Authors

Showing all 26766 results

NameH-indexPapersCitations
Ashok Kumar1515654164086
Alexander J. Smola122434110222
Howard I. Maibach116182160765
Sanjay Jain10388146880
Amirhossein Sahebkar100130746132
Marc Davis9941250243
Wenjun Zhang9697638530
Jian Xu94136652057
Fortunato Ciardiello9469547352
Tong Zhang9341436519
Michael E. J. Lean9241130939
Ashish K. Jha8750330020
Xin Zhang87171440102
Theunis Piersma8663234201
George Varghese8425328598
Network Information
Related Institutions (5)
University of Toronto
294.9K papers, 13.5M citations

85% related

University of California, San Diego
204.5K papers, 12.3M citations

85% related

University College London
210.6K papers, 9.8M citations

84% related

Cornell University
235.5K papers, 12.2M citations

84% related

University of Washington
305.5K papers, 17.7M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
202247
20211,088
20201,074
20191,568
20181,352