scispace - formally typeset
Search or ask a question
Institution

Yangzhou University

EducationYangzhou, China
About: Yangzhou University is a education organization based out in Yangzhou, China. It is known for research contribution in the topics: Catalysis & Gene. The organization has 25247 authors who have published 22014 publications receiving 321000 citations. The organization is also known as: YZU.
Topics: Catalysis, Gene, Population, Starch, Chemistry


Papers
More filters
Journal ArticleDOI
TL;DR: This work was supported in part by the Royal Society of the UK, the National Natural Science Foundation of China, and the Alexander von Humboldt Foundation of Germany.

2,404 citations

Journal ArticleDOI
24 Apr 2008-Nature
TL;DR: Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products.
Abstract: Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.

1,248 citations

Journal ArticleDOI
23 Oct 2014-Nature
TL;DR: If farmers in China could achieve average grain yields equivalent to 80% of this treatment by 2030, total production of rice, wheat and maize in China would be more than enough to meet the demand for direct human consumption and a substantially increased demand for animal feed, while decreasing the environmental costs of intensive agriculture.
Abstract: In an experiment across China to test integrated soil–crop system management for rice, wheat and maize against current practice, improvements in grain yield are equivalent to high-input techniques, but nutrient use, nutrient loss and greenhouse gas emissions are lower than current practice. Integrated soil–crop system management is a technique that aims to maximize yield and minimize environmental impact by adapting cropping systems to local conditions through optimal nutrient application, seasonal timing and the use of the best crop varieties. Fusuo Zhang and colleagues report the results of a China-wide test of this technique for the three main cereal crops — rice, wheat and maize. In comparisons with current practice and high input techniques, the authors find that the integrated system achieves yield improvements equivalent to high input techniques but with lower nutrient use, nutrient loss and greenhouse gas emissions than those found with the current practice. Agriculture faces great challenges to ensure global food security by increasing yields while reducing environmental costs1,2. Here we address this challenge by conducting a total of 153 site-year field experiments covering the main agro-ecological areas for rice, wheat and maize production in China. A set of integrated soil–crop system management practices based on a modern understanding of crop ecophysiology and soil biogeochemistry increases average yields for rice, wheat and maize from 7.2 million grams per hectare (Mg ha−1), 7.2 Mg ha−1 and 10.5 Mg ha−1 to 8.5 Mg ha−1, 8.9 Mg ha−1 and 14.2 Mg ha−1, respectively, without any increase in nitrogen fertilizer. Model simulation and life-cycle assessment3 show that reactive nitrogen losses and greenhouse gas emissions are reduced substantially by integrated soil–crop system management. If farmers in China could achieve average grain yields equivalent to 80% of this treatment by 2030, over the same planting area as in 2012, total production of rice, wheat and maize in China would be more than enough to meet the demand for direct human consumption and a substantially increased demand for animal feed, while decreasing the environmental costs of intensive agriculture.

1,213 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: A wide range of applications based on these materials for ORR, OER, HER and multifunctional electrocatalysis are discussed, with an emphasis on the required features of MOF-derived carbon-based materials for the Electrocatalysis of corresponding reactions.
Abstract: Oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are three key reactions for the development of green and sustainable energy systems. Efficient electrocatalysts for these reactions are highly desired to lower their overpotentials and promote practical applications of related energy devices. Metal–organic frameworks (MOFs) have recently emerged as precursors to fabricate carbon-based electrocatalysts with high electrical conductivity and uniformly distributed active sites. In this review, the current progress of MOF-derived carbon-based materials for ORR/OER/HER electrocatalysis is presented. Materials design strategies of MOF-derived carbon-based materials are firstly summarized to show the rich possibilities of the morphology and composition of MOF-derived carbon-based materials. A wide range of applications based on these materials for ORR, OER, HER and multifunctional electrocatalysis are discussed, with an emphasis on the required features of MOF-derived carbon-based materials for the electrocatalysis of corresponding reactions. Finally, perspectives on the development of MOF-derived carbon-based materials for ORR, OER and HER electrocatalysis are provided.

970 citations


Authors

Showing all 25435 results

NameH-indexPapersCitations
Jing Wang1844046202769
Yang Yang1712644153049
Yang Liu1292506122380
Chao Zhang127311984711
Qiang Xu11758550151
Guoxiu Wang11765446145
Jun-Jie Zhu10375441655
Carsten Bolm9687437407
Wei Wang95354459660
Jianhua Zhang9241528085
Bin Li92175542835
Jianguo Liu9056034410
Sukbok Chang8639025084
Dawei Wang8593441226
Trinad Chakraborty8441026164
Network Information
Related Institutions (5)
Zhejiang University
183.2K papers, 3.4M citations

93% related

Shandong University
99.1K papers, 1.6M citations

92% related

Nanjing University
105.5K papers, 2.2M citations

91% related

Jilin University
88.9K papers, 1.4M citations

91% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202378
2022418
20213,421
20202,824
20192,338