scispace - formally typeset
Search or ask a question
Institution

Yanshan University

EducationQinhuangdao, China
About: Yanshan University is a education organization based out in Qinhuangdao, China. It is known for research contribution in the topics: Microstructure & Control theory. The organization has 19544 authors who have published 16904 publications receiving 184378 citations. The organization is also known as: Yānshān dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental and computational studies suggest that the sorption behavior is related to the hydroxyl groups in activated Ti sites, where Pb(II) ion exchange is facilitated by the formation of a hexagonal potential trap.
Abstract: The functional groups and site interactions on the surfaces of two-dimensional (2D) layered titanium carbide can be tailored to attain some extraordinary physical properties. Herein a 2D alk-MXene (Ti3C2(OH/ONa)xF2–x) material, prepared by chemical exfoliation followed by alkalization intercalation, exhibits preferential Pb(II) sorption behavior when competing cations (Ca(II)/Mg(II)) coexisted at high levels. Kinetic tests show that the sorption equilibrium is achieved in as short a time as 120 s. Attractively, the alk-MXene presents efficient Pb(II) uptake performance with the applied sorption capacities of 4500 kg water per alk-MXene, and the effluent Pb(II) contents are below the drinking water standard recommended by the World Health Organization (10 μg/L). Experimental and computational studies suggest that the sorption behavior is related to the hydroxyl groups in activated Ti sites, where Pb(II) ion exchange is facilitated by the formation of a hexagonal potential trap.

1,007 citations

Journal ArticleDOI
TL;DR: A novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases is proposed, which can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility.
Abstract: High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi 2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility.

938 citations

Journal ArticleDOI
TL;DR: A semiempirical method for the evaluation of hardness of multicomponent crystals is presented and it is found that bond density or electronic density, bond length, and degree of covalent bonding are three determinative factors for the hardness of a polar covalents crystal.
Abstract: Based on the idea that the hardness of covalent crystal is intrinsic and equivalent to the sum of the resistance to the indenter of each bond per unit area, a semiempirical method for the evaluation of hardness of multicomponent crystals is presented. Applied to beta-BC2N crystal, the predicted value of hardness is in good agreement with the experimental value. It is found that bond density or electronic density, bond length, and degree of covalent bonding are three determinative factors for the hardness of a polar covalent crystal. Our method offers the advantage of applicability to a broad class of materials and initializes a link between macroscopic property and electronic structure from first principles calculation.

825 citations

Journal ArticleDOI
TL;DR: The fabrication of different aspect ratios of the ZnO nanorods with surface defects by mechanical-assisted thermal decomposition method revealed that Zn O nanorod with higher aspect ratio and surface defects show significantly higher photocatalytic performances.
Abstract: ZnO, aside from TiO2, has been considered as a promising material for purification and disinfection of water and air, and remediation of hazardous waste, owing to its high activity, environment-friendly feature and lower cost. However, their poor visible light utilization greatly limited their practical applications. Herein, we demonstrate the fabrication of different aspect ratios of the ZnO nanorods with surface defects by mechanical-assisted thermal decomposition method. The experiments revealed that ZnO nanorods with higher aspect ratio and surface defects show significantly higher photocatalytic performances.

824 citations

Journal ArticleDOI
TL;DR: In this article, the authors present three most popular microscopic models based on distinct scaling schemes of this resistance, namely the bond resistance, bond strength, and electronegativity models, with key points during employing these microscopic models addressed.
Abstract: Hardness can be defined microscopically as the combined resistance of chemical bonds in a material to indentation. The current review presents three most popular microscopic models based on distinct scaling schemes of this resistance, namely the bond resistance, bond strength, and electronegativity models, with key points during employing these microscopic models addressed. These models can be used to estimate the hardness of known crystals. More importantly, hardness prediction based on the designed crystal structures becomes feasible with these models. Consequently, a straightforward and powerful criterion for novel superhard materials is provided. The current focuses of research on potential superhard materials are also discussed.

792 citations


Authors

Showing all 19693 results

NameH-indexPapersCitations
Jian Yang1421818111166
Peng Shi137137165195
Tao Zhang123277283866
David Zhang111102755118
Lei Liu98204151163
Guoliang Li8479531122
Hao Yu8198127765
Jian Yu Huang8133926599
Chen Chen7666524846
Wei Jin7192921569
Xiaoli Li6987720690
K. L. Ngai6441215505
Zhiqiang Zhang6059516675
Hak-Keung Lam5941412890
Wei Wang5822914230
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

95% related

Dalian University of Technology
71.9K papers, 1.1M citations

93% related

South China University of Technology
69.4K papers, 1.2M citations

93% related

Tianjin University
79.9K papers, 1.2M citations

92% related

Northeastern University
58.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202369
2022297
20211,753
20201,486
20191,432
20181,209