scispace - formally typeset
Search or ask a question
Institution

Yokohama National University

EducationYokohama, Kanagawa, Japan
About: Yokohama National University is a education organization based out in Yokohama, Kanagawa, Japan. It is known for research contribution in the topics: Magnetization & Photonic crystal. The organization has 9924 authors who have published 17660 publications receiving 296165 citations. The organization is also known as: YNU & Yokohama Kokuritsu Daigaku.


Papers
More filters
Journal ArticleDOI
TL;DR: The research focuses on the durability of polymer electrolyte fuel cells (PEFCs), in particular, membrane degradation, and he has been involved in NEDO R&D research projects on PEFC durability since 2001.
Abstract: Rod Borup is a Team Leader in the fuel cell program at Los Alamos National Lab in Los Alamos, New Mexico. He received his B.S.E. in Chemical Engineering from the University of Iowa in 1988 and his Ph.D. from the University of Washington in 1993. He has worked on fuel cell technology since 1994, working in the areas of hydrogen production and PEM fuel cell stack components. He has been awarded 12 U.S. patents, authored over 40 papers related to fuel cell technology, and presented over 50 oral papers at national meetings. His current main research area is related to water transport in PEM fuel cells and PEM fuel cell durability. Recently, he was awarded the 2005 DOE Hydrogen Program R&D Award for the most significant R&D contribution of the year for his team's work in fuel cell durability and was the Principal Investigator for the 2004 Fuel Cell Seminar (San Antonio, TX, USA) Best Poster Award. Jeremy Meyers is an Assistant Professor of materials science and engineering and mechanical engineering at the University of Texas at Austin, where his research focuses on the development of electrochemical energy systems and materials. Prior to joining the faculty at Texas, Jeremy workedmore » as manager of the advanced transportation technology group at UTC Power, where he was responsible for developing new system designs and components for automotive PEM fuel cell power plants. While at UTC Power, Jeremy led several customer development projects and a DOE-sponsored investigation into novel catalysts and membranes for PEM fuel cells. Jeremy has coauthored several papers on key mechanisms of fuel cell degradation and is a co-inventor of several patents. In 2006, Jeremy and several colleagues received the George Mead Medal, UTC's highest award for engineering achievement, and he served as the co-chair of the Gordon Research Conference on fuel cells. Jeremy received his Ph.D. in Chemical Engineering from the University of California at Berkeley and holds a Bachelor's Degree in Chemical Engineering from Stanford University. Bryan Pivovar received his B.S. in Chemical Engineering from the University of Wisconsin in 1994. He completed his Ph.D. in Chemical Engineering at the University of Minnesota in 2000 under the direction of Profs. Ed Cussler and Bill Smyrl, studying transport properties in fuel cell electrolytes. He continued working in the area of polymer electrolyte fuel cells at Los Alamos National Laboratory as a post-doc (2000-2001), as a technical staff member (2001-2005), and in his current position as a team leader (2005-present). In this time, Bryan's research has expanded to include further aspects of fuel cell operation, including electrodes, subfreezing effects, alternative polymers, hydroxide conductors, fuel cell interfaces, impurities, water transport, and high-temperature membranes. Bryan has served at various levels in national and international conferences and workshops, including organizing a DOE sponsored workshop on freezing effects in fuel cells and an ARO sponsored workshop on alkaline membrane fuel cells, and he was co-chair of the 2007 Gordon Research Conference on Fuel Cells. Minoru Inaba is a Professor at the Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Japan. He received his B.Sc. from the Faculty of Engineering, Kyoto University, in 1984 and his M.Sc. in 1986 and his Dr. Eng. in 1995 from the Graduate School of Engineering, Kyoto University. He has worked on electrochemical energy conversion systems including fuel cells and lithium-ion batteries at Kyoto University (1992-2002) and at Doshisha University (2002-present). His primary research interest is the durability of polymer electrolyte fuel cells (PEFCs), in particular, membrane degradation, and he has been involved in NEDO R&D research projects on PEFC durability since 2001. He has authored over 140 technical papers and 30 review articles. Kenichiro Ota is a Professor of the Chemical Energy Laboratory at the Graduate School of Engineering, Yokohama National University, Japan. He received his B.S.E. in Applied Chemistry from the University of Tokyo in 1968 and his Ph.D. from the University of Tokyo in 1973. He has worked on hydrogen energy and fuel cells since 1974, working on materials science for fuel cells and water electrolysis. He has published more than 150 original papers, 70 review papers, and 50 scientific books. He is now the president of the Hydrogen Energy Systems Society of Japan, the chairman of the Fuel Cell Research Group of the Electrochemical Society of Japan, and the chairman of the National Committee for the Standardization of the Stationary Fuel Cells. ABSTRACT TRUNCATED« less

2,921 citations

Journal ArticleDOI
TL;DR: The magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation, and the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling.
Abstract: Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.

1,935 citations

Journal ArticleDOI
TL;DR: In this article, the background theory of slow light, as well as an overview of recent experimental demonstrations based on photonic-band engineering are reviewed, and practical issues related to real devices and their applications are also discussed.
Abstract: Slow light with a remarkably low group velocity is a promising solution for buffering and time-domain processing of optical signals. It also offers the possibility for spatial compression of optical energy and the enhancement of linear and nonlinear optical effects. Photonic-crystal devices are especially attractive for generating slow light, as they are compatible with on-chip integration and room-temperature operation, and can offer wide-bandwidth and dispersion-free propagation. Here the background theory, recent experimental demonstrations and progress towards tunable slow-light structures based on photonic-band engineering are reviewed. Practical issues related to real devices and their applications are also discussed. The unique properties of wide-bandwidth and dispersion-free propagation in photonic-crystal devices have made them a good candidate for slow-light generation. This article gives the background theory of slow light, as well as an overview of recent experimental demonstrations based on photonic-band engineering.

1,797 citations

Journal ArticleDOI
TL;DR: The alkyl chain length of 1-alkyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide was varied to prepare a series of room-temperature ionic liquids (RTILs), and the thermal behavior, density, viscosity, self-diffusion coefficients, and ionic conductivity were measured over a wide temperature range.
Abstract: The alkyl chain length of 1-alkyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([Rmim][(CF3SO2)2N], R = methyl (m), ethyl (e), butyl (b), hexyl (C6), and octyl (C8)) was varied to prepare a series of room-temperature ionic liquids (RTILs), and the thermal behavior, density, viscosity, self-diffusion coefficients of the cation and anion, and ionic conductivity were measured over a wide temperature range. The self-diffusion coefficient, viscosity, ionic conductivity, and molar conductivity change with temperature following the Vogel−Fulcher−Tamman equation, and the density shows a linear decrease. The pulsed-field-gradient spin−echo NMR method reveals a higher self-diffusion coefficient for the cation compared to that for the anion over a wide temperature range, even if the cationic radius is larger than that of the anion. The summation of the cationic and anionic diffusion coefficients for the RTILs follows the order [emim][(CF3SO2)2N] > [mmim][(CF3SO2)2N] > [bmim][(CF3SO2)2N] > [C6mim][(CF3SO2)...

1,549 citations

Journal ArticleDOI
TL;DR: Ionic liquids offer a unique suite of properties that make them important candidates for a number of energy related applications, such as fuel cell electrolytes and CO2 absorbents for post-combustion CO2 capture as mentioned in this paper.
Abstract: Ionic liquids offer a unique suite of properties that make them important candidates for a number of energy related applications. Cation–anion combinations that exhibit low volatility coupled with high electrochemical and thermal stability, as well as ionic conductivity, create the possibility of designing ideal electrolytes for batteries, super-capacitors, actuators, dye sensitised solar cells and thermo-electrochemical cells. In the field of water splitting to produce hydrogen they have been used to synthesize some of the best performing water oxidation catalysts and some members of the protic ionic liquid family co-catalyse an unusual, very high energy efficiency water oxidation process. As fuel cell electrolytes, the high proton conductivity of some of the protic ionic liquid family offers the potential of fuel cells operating in the optimum temperature region above 100 °C. Beyond electrochemical applications, the low vapour pressure of these liquids, along with their ability to offer tuneable functionality, also makes them ideal as CO2 absorbents for post-combustion CO2 capture. Similarly, the tuneable phase properties of the many members of this large family of salts are also allowing the creation of phase-change thermal energy storage materials having melting points tuned to the application. This perspective article provides an overview of these developing energy related applications of ionic liquids and offers some thoughts on the emerging challenges and opportunities.

1,427 citations


Authors

Showing all 9970 results

NameH-indexPapersCitations
Masayoshi Watanabe9564934819
Sandra Díaz8223747045
Egon Matijević8146625015
Matti Hämäläinen7851433188
Michael Pecht78113129099
Shigeru Nagase7661722099
Masako Yudasaka7241717761
Takashi Tatsumi7143719993
Sai T. Chu6947916548
Saulius Juodkazis6874719343
A. Minamino6522215968
Yasuo Minami6325312655
Seiji Tsuzuki6330016252
Gautam Biswas6372116146
Yoshihiko Takano6269117627
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

96% related

Waseda University
46.8K papers, 837.8K citations

95% related

Osaka University
185.6K papers, 5.1M citations

91% related

University of Tokyo
337.5K papers, 10.1M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202271
2021700
2020711
2019801
2018800