scispace - formally typeset
Search or ask a question
Institution

Zuse Institute Berlin

FacilityBerlin, Germany
About: Zuse Institute Berlin is a facility organization based out in Berlin, Germany. It is known for research contribution in the topics: Integer programming & Solver. The organization has 629 authors who have published 2139 publications receiving 53274 citations. The organization is also known as: ZIB.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the main design concepts of SCIP and how it can be used to solve constraint integer programs is given and experimental results show that the approach outperforms current state-of-the-art techniques for proving the validity of properties on circuits containing arithmetic.
Abstract: Constraint integer programming (CIP) is a novel paradigm which integrates constraint programming (CP), mixed integer programming (MIP), and satisfiability (SAT) modeling and solving techniques. In this paper we discuss the software framework and solver SCIP (Solving Constraint Integer Programs), which is free for academic and non-commercial use and can be downloaded in source code. This paper gives an overview of the main design concepts of SCIP and how it can be used to solve constraint integer programs. To illustrate the performance and flexibility of SCIP, we apply it to two different problem classes. First, we consider mixed integer programming and show by computational experiments that SCIP is almost competitive to specialized commercial MIP solvers, even though SCIP supports the more general constraint integer programming paradigm. We develop new ingredients that improve current MIP solving technology. As a second application, we employ SCIP to solve chip design verification problems as they arise in the logic design of integrated circuits. This application goes far beyond traditional MIP solving, as it includes several highly non-linear constraints, which can be handled nicely within the constraint integer programming framework. We show anecdotally how the different solving techniques from MIP, CP, and SAT work together inside SCIP to deal with such constraint classes. Finally, experimental results show that our approach outperforms current state-of-the-art techniques for proving the validity of properties on circuits containing arithmetic.

1,163 citations

Journal ArticleDOI
TL;DR: A hierarchy of low-dimensional Galerkin models is proposed for the viscous, incompressible flow around a circular cylinder building on the pioneering works of Stuart (1958), Deane et al. (1991), and Ma & Karniadakis (2002) as mentioned in this paper.
Abstract: A hierarchy of low-dimensional Galerkin models is proposed for the viscous, incompressible flow around a circular cylinder building on the pioneering works of Stuart (1958), Deane et al. (1991), and Ma & Karniadakis (2002). The empirical Galerkin model is based on an eight-dimensional Karhunen–Loeve decomposition of a numerical simulation and incorporates a new ‘shift-mode’ representing the mean-field correction. The inclusion of the shift-mode significantly improves the resolution of the transient dynamics from the onset of vortex shedding to the periodic von Karman vortex street. In addition, the Reynolds-number dependence of the flow can be described with good accuracy. The inclusion of stability eigenmodes further enhances the accuracy of fluctuation dynamics. Mathematical and physical system reduction approaches lead to invariant-manifold and to mean-field models, respectively. The corresponding two-dimensional dynamical systems are further reduced to the Landau amplitude equation.

989 citations

Journal ArticleDOI
TL;DR: In a systematic review of scaffold architectures, the underlying effects and control options will be demonstrated, and suggestions will be given for designing effective multivalent binding systems, as well as for polyvalent therapeutics.
Abstract: Multivalent interactions can be applied universally for a targeted strengthening of an interaction between different interfaces or molecules. The binding partners form cooperative, multiple receptor-ligand interactions that are based on individually weak, noncovalent bonds and are thus generally reversible. Hence, multi- and polyvalent interactions play a decisive role in biological systems for recognition, adhesion, and signal processes. The scientific and practical realization of this principle will be demonstrated by the development of simple artificial and theoretical models, from natural systems to functional, application-oriented systems. In a systematic review of scaffold architectures, the underlying effects and control options will be demonstrated, and suggestions will be given for designing effective multivalent binding systems, as well as for polyvalent therapeutics.

820 citations

Journal ArticleDOI
TL;DR: This work identifies a novel higher-order magnetic resonance at around 370 THz (800 nm wavelength) that evolves out of the Mie resonance for oblique incidence and shows that the structures allow for a negative magnetic permeability.
Abstract: Arrays of gold split rings with a 50-nm minimum feature size and with an LC resonance at 200 THz frequency (1.5 microm wavelength) are fabricated. For normal-incidence conditions, they exhibit a pronounced fundamental magnetic mode, arising from a coupling via the electric component of the incident light. For oblique incidence, a coupling via the magnetic component is demonstrated as well. Moreover, we identify a novel higher-order magnetic resonance at around 370 THz (800 nm wavelength) that evolves out of the Mie resonance for oblique incidence. Comparison with theory delivers good agreement and also shows that the structures allow for a negative magnetic permeability.

789 citations

Journal ArticleDOI
TL;DR: This compendium is for established researchers, newcomers, and students alike, highlighting interesting and rewarding problems for the coming years in single-cell data science.
Abstract: The recent boom in microfluidics and combinatorial indexing strategies, combined with low sequencing costs, has empowered single-cell sequencing technology. Thousands-or even millions-of cells analyzed in a single experiment amount to a data revolution in single-cell biology and pose unique data science problems. Here, we outline eleven challenges that will be central to bringing this emerging field of single-cell data science forward. For each challenge, we highlight motivating research questions, review prior work, and formulate open problems. This compendium is for established researchers, newcomers, and students alike, highlighting interesting and rewarding problems for the coming years.

677 citations


Authors

Showing all 635 results

NameH-indexPapersCitations
Hans-Peter Seidel112121351080
Alex Martin8840636063
Hiroshi Ishii7869930659
Ioannis G. Kevrekidis7560622569
Frank Schmidt5449110658
Gerrit Schierholz533728522
Christiane Helling522478473
Hans-Christian Hege523038479
Peter Deuflhard4923410350
Paul E.L. Rakow474217311
Günter M. Ziegler4537210647
James Zanotti443446480
Christof Schütte432578391
Sebastian Reich421976955
Tobias Kramer412627949
Network Information
Related Institutions (5)
Carnegie Mellon University
104.3K papers, 5.9M citations

88% related

ETH Zurich
122.4K papers, 5.1M citations

88% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

88% related

Georgia Institute of Technology
119K papers, 4.6M citations

86% related

Technische Universität München
123.4K papers, 4M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
202210
2021154
2020138
2019130
2018146