scispace - formally typeset
Search or ask a question
JournalISSN: 2155-5435

ACS Catalysis 

American Chemical Society
About: ACS Catalysis is an academic journal published by American Chemical Society. The journal publishes majorly in the area(s): Catalysis & Chemistry. It has an ISSN identifier of 2155-5435. Over the lifetime, 11504 publications have been published receiving 659755 citations. The journal is also known as: American Chemical Society catalysis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of nitrogen-doped graphene is presented, including various synthesis methods to introduce N doping and various characterization techniques for the examination of various N bonding configurations.
Abstract: Nitrogen doping has been an effective way to tailor the properties of graphene and render its potential use for various applications. Three common bonding configurations are normally obtained when doping nitrogen into the graphene: pyridinic N, pyrrolic N, and graphitic N. This paper reviews nitrogen-doped graphene, including various synthesis methods to introduce N doping and various characterization techniques for the examination of various N bonding configurations. Potential applications of N-graphene are also reviewed on the basis of experimental and theoretical studies.

3,075 citations

Journal ArticleDOI
TL;DR: In this article, the intrinsic catalytic activity and durability of carbon supported Ru, Ir, and Pt nanoparticles and corresponding bulk materials for the electrocatalytic oxygen evolution reaction (OER) were examined by surface-sensitive cyclic voltammetry.
Abstract: A comparative investigation was performed to examine the intrinsic catalytic activity and durability of carbon supported Ru, Ir, and Pt nanoparticles and corresponding bulk materials for the electrocatalytic oxygen evolution reaction (OER). The electrochemical surface characteristics of nanoparticles and bulk materials were studied by surface-sensitive cyclic voltammetry. Although basically similar voltammetric features were observed for nanoparticles and bulk materials of each metal, some differences were uncovered highlighting the changes in oxidation chemistry. On the basis of the electrochemical results, we demonstrated that Ru nanoparticles show lower passivation potentials compared to bulk Ru material. Ir nanoparticles completely lost their voltammetric metallic features during the voltage cycling, in contrast to the corresponding bulk material. Finally, Pt nanoparticles show an increased oxophilic nature compared to bulk Pt. With regard to the OER performance, the most pronounced effects of nanosca...

1,885 citations

Journal ArticleDOI
TL;DR: In this article, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct, which is essential to ensure higher life cycle and less decay in cell efficiency.
Abstract: Increasing demand for finding eco-friendly and everlasting energy sources is now totally depending on fuel cell technology. Though it is an eco-friendly way of producing energy for the urgent requirements, it needs to be improved to make it cheaper and more eco-friendly. Although there are several types of fuel cells, the hydrogen (H2) and oxygen (O2) fuel cell is the one with zero carbon emission and water as the only byproduct. However, supplying fuels in the purest form (at least the H2) is essential to ensure higher life cycles and less decay in cell efficiency. The current large-scale H2 production is largely dependent on steam reforming of fossil fuels, which generates CO2 along with H2 and the source of which is going to be depleted. As an alternate, electrolysis of water has been given greater attention than the steam reforming. The reasons are as follows: the very high purity of the H2 produced, the abundant source, no need for high-temperature, high-pressure reactors, and so on. In earlier days,...

1,757 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the polycondensation of this structure, how to modify band positions and band gap by doping and copolymerization, and how to texture the organic solid to make it an effective photocatalyst.
Abstract: Polymeric graphitic carbon nitride (for simplicity, g-C3N4) is a layered material similar to graphene, being composed of only C, N, and some impurity H. Contrary to graphenes, g-C3N4 is a medium band gap semiconductor and an effective photocatalyst for a broad variety of reactions, and it possesses a high thermal and chemical stability In this Perspective, we describe the polycondensation of this structure, how to modify band positions and band gap by doping and copolymerization, and how to texture the organic solid to make it an effective photocatalyst. We then describe the photochemical splitting of water and some mild and selective photooxidation reactions catalyzed by g-C3N4.

1,449 citations

Journal ArticleDOI
TL;DR: In this paper, the turnover frequency, an intrinsic activity metric, and the total electrode activity, a device-oriented activity metric are compared between molybdenum sulfide catalysts.
Abstract: We discuss recent developments in nanostructured molybdenum sulfide catalysts for the electrochemical hydrogen evolution reaction. To develop a framework for performing consistent and meaningful comparisons between catalysts, we review standard experimental methodologies for measuring catalyst performance and define two metrics used in this perspective for comparing catalyst activity: the turnover frequency, an intrinsic activity metric, and the total electrode activity, a device-oriented activity metric. We discuss general strategies for synthesizing catalysts with improved activity, namely, increasing the number of electrically accessible active sites or increasing the turnover frequency of each site. Then we consider a number of state-of-the-art molybdenum sulfide catalysts, including crystalline MoS2, amorphous MoSx, and molecular cluster materials, to highlight these strategies in practice. Comparing these catalysts reveals that most of the molybdenum sulfide catalysts have similar active site turnov...

1,272 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023839
20221,522
20211,326
20201,410
20191,167
20181,253