scispace - formally typeset
Search or ask a question

Showing papers in "ACS Catalysis in 2015"


Journal ArticleDOI
TL;DR: In this paper, a brief summary of the key issues for the methanol-to-olefins (MTO) reaction is given, including studies on the reaction mechanism, molecular sieve synthesis and crystallization mechanism, catalyst and its manufacturing scale-up, reactor selection and reactor scaleup, process demonstration, and commercialization.
Abstract: The methanol-to-olefins (MTO) reaction is an interesting and important reaction for both fundamental research and industrial application. The Dalian Institute of Chemical Physics (DICP) has developed a MTO technology that led to the successful construction and operation of the world’s first coal to olefin plant in 2010. This historical perspective gives a brief summary on the key issues for the process development, including studies on the reaction mechanism, molecular sieve synthesis and crystallization mechanism, catalyst and its manufacturing scale-up, reactor selection and reactor scale-up, process demonstration, and commercialization. Further challenges on the fundamental research and the directions for future catalyst improvement are also suggested.

1,174 citations


Journal ArticleDOI
TL;DR: In this article, the authors introduce the thermodynamics, reaction kinetics, reaction mechanisms, and reaction pathways of ORR in aqueous alkaline media, and summarize the current status of the reaction pathways, advanced catalysts, and the future challenges of the research and development of the ORR.
Abstract: The oxygen reduction reaction (ORR) is an important electrode reaction for energy storage and conversion devices based on oxygen electrocatalysis. This paper introduces the thermodynamics, reaction kinetics, reaction mechanisms, and reaction pathways of ORR in aqueous alkaline media. Recent advances of the catalysts for ORR were extensively reviewed, including precious metals, nonmetal-doped carbon, carbon–transition metal hybrids, transition metal oxides with spinel and perovskite structures, and so forth. The applications of those ORR catalysts to zinc–air batteries and alkaline fuel cells were briefly introduced. A concluding remark summarizes the current status of the reaction pathways, advanced catalysts, and the future challenges of the research and development of ORR.

949 citations


Journal ArticleDOI
TL;DR: The catalytic formation of cyclic organic carbonates (COCs) using carbon dioxide (CO2) as a renewable carbon feed stock is a highly vibrant area of research with an increasing amount of researchers focusing on this thematic investigation as discussed by the authors.
Abstract: The catalytic formation of cyclic organic carbonates (COCs) using carbon dioxide (CO2) as a renewable carbon feed stock is a highly vibrant area of research with an increasing amount of researchers focusing on this thematic investigation. These organic carbonates are highly useful building blocks and nontoxic reagents and are most commonly derived from CO2 coupling reactions with oxirane and dialcohol precursors using homogeneous catalysis methodologies. The activation of suitable reaction partners using catalysis as a key technology is a requisite for efficient CO2 conversion as its high kinetic stability poses a barrier to access functional organic molecules with added value in both academic and industrial laboratories. Although this area of science has been flourishing for at least a decade, in the past 2–3 years, significant advancements have been made to address the general reactivity and selectivity issues that are associated with the formation of COCs. Here, we present a concise overview of these a...

764 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide a concise appraisal on graphene doping methods, possible doping configurations and their unique electrochemical properties, including single and double doping with N, B, S, and P. In addition, three-dimensional heteroatom-doped graphene structures have been discussed, and those especially can be directly utilized as catalyst electrodes without extra binders and s.
Abstract: To address aggravating energy and environment issues, inexpensive, highly active, and durable electrocatalysts as noble metal substitutes both at the anode and cathode are being actively pursued. Among them, heteroatom-doped graphene-based materials show extraordinary electrocatalytic performance, some even close to or outperforming the state-of-the-art noble metals, such as Pt- and IrO2-based materials. This review provides a concise appraisal on graphene doping methods, possible doping configurations and their unique electrochemical properties, including single and double doping with N, B, S, and P. In addition, heteroatom-doped graphene-based materials are reviewed as electrocatalysts for oxygen reduction, hydrogen evolution, and oxygen evolution reactions in terms of their electrocatalytic mechanisms and performance. Significantly, three-dimensional heteroatom-doped graphene structures have been discussed, and those especially can be directly utilized as catalyst electrodes without extra binders and s...

762 citations


Journal ArticleDOI
Xiaoguang Duan1, Hongqi Sun1, Yuxian Wang1, Jian Kang1, Shaobin Wang1 
TL;DR: In this paper, N-doped carbon nanotubes (NoCNTs) were employed as metal-free catalysts for phenol catalytic oxidation with sulfate radicals and, more importantly, a detailed mechanism of peroxymonosulfate (PMS) activation and the roles of nitrogen heteroatoms were comprehensively investigated.
Abstract: Metal-free materials have been demonstrated to be promising alternatives to conventional metal-based catalysts. Catalysis on nanocarbons comparable to that of cobalt- or manganese-based catalysts in peroxymonosulfate (PMS) activation has been achieved, yet the catalyst stability has to be addressed and the mechanism also needs to be elucidated. In this study, N-doped carbon nanotubes (NoCNTs) were employed as metal-free catalysts for phenol catalytic oxidation with sulfate radicals and, more importantly, a detailed mechanism of PMS activation and the roles of nitrogen heteroatoms were comprehensively investigated. For the first time, a nonradical pathway accompanied by radical generation (•OH and SO4•–) in phenol oxidation with PMS was discovered upon nitrogen heteroatom doping. The NoCNTs presented excellent stability due to the emerging nonradical processes. The findings can be used for the design of efficient and robust metal-free catalysts with both superior catalytic performance and high stability fo...

700 citations


Journal ArticleDOI
TL;DR: In this article, self-doping of the CO32-anionic group into a wide bandgap semiconductor Bi2O2CO3 realized by a one-pot hydrothermal technique was demonstrated.
Abstract: We herein demonstrate self-doping of the CO32– anionic group into a wide bandgap semiconductor Bi2O2CO3 realized by a one-pot hydrothermal technique. The photoresponsive range of the self-doped Bi2O2CO3 can be extended from UV to visible light and the band gap can be continuously tuned. Density functional theory (DFT) calculation results demonstrate that the foreign CO32– ions are doped in the caves constructed by the four adjacent CO32– ions and the CO32– self-doping can effectively narrow the band gap of Bi2O2CO3 by lowering the conduction band position and meanwhile generating impurity level. The photocatalytic performance is evaluated by monitoring NO removal from the gas phase, photodegradation of a colorless contaminant (bisphenol A, BPA) in an aqueous solution, and photocurrent generation. In comparison with the pristine Bi2O2CO3 which is not sensitive to visible light, the self-doped Bi2O2CO3 exhibits drastically enhanced visible-light photoreactivity, which is also superior to that of many other ...

667 citations


Journal ArticleDOI
TL;DR: In this paper, the selectivity of carbon dioxide to C2 compounds (ethylene and ethanol) on copper(I) oxide films has been investigated at various electrochemical potentials.
Abstract: The selective electroreduction of carbon dioxide to C2 compounds (ethylene and ethanol) on copper(I) oxide films has been investigated at various electrochemical potentials. Aqueous 0.1 M KHCO3 was used as electrolyte. A remarkable finding is that the faradic yields of ethylene and ethanol can be systematically tuned by changing the thickness of the deposited overlayers. Films 1.7–3.6 μm thick exhibited the best selectivity for these C2 compounds at −0.99 V vs RHE, with faradic efficiencies (FE) of 34–39% for ethylene and 9–16% for ethanol. Less than 1% methane was formed. A high C2H4/CH4 products’ ratio of up to ∼100 could be achieved. Scanning electron microscopy, X-ray diffraction, and in situ Raman spectroscopy revealed that the Cu2O films reduced rapidly and remained as metallic Cu0 particles during the CO2 reduction. The selectivity trends exhibited by the catalysts during CO2 reduction in phosphate buffer, and KHCO3 electrolytes suggest that an increase in local pH at the surface of the electrode i...

664 citations


Journal ArticleDOI
TL;DR: In this article, a simple yet cost-effective strategy is developed to fabricate nitrogen and phosphorus dual-doped graphene/carbon nanosheets (N,P-GCNS) with N,Pdoped carbon sandwiching few-layer-thick graphene.
Abstract: It is highly desirable but challenging to develop bifunctional catalysts for efficiently catalyzing both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in energy storage and conversion systems. Here a simple yet cost-effective strategy is developed to fabricate nitrogen and phosphorus dual-doped graphene/carbon nanosheets (N,P-GCNS) with N,P-doped carbon sandwiching few-layers-thick graphene. The as-prepared N,P-GCNS shows outstanding catalytic activity toward both ORR and OER with a potential gap of 0.71 V between the OER potential at a current density of 10 mA cm–2 and the ORR potential at a current density of −3 mA cm–2, illustrating that it is the best metal-free bifunctional electrocatalysts reported to date. The superb bifunctional catalytic performance is attributed to the synergistic effects between the doped N and P atoms, the full exposure of the active sites on the surface of the N,P-GCNS nanosheets, the high conductivity of the incorporated graphene, and the large surf...

601 citations


Journal ArticleDOI
TL;DR: In this article, a variety of dimensional-structured nanocarbons were applied for the first time as metal-free catalysts to activate persulfate (PS) for catalytic oxidation of phenolics and dyes as well as their degradation intermediates.
Abstract: A variety of dimensional-structured nanocarbons were applied for the first time as metal-free catalysts to activate persulfate (PS) for catalytic oxidation of phenolics and dyes as well as their degradation intermediates. Single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), and mesoporous carbon (CMK-8) demonstrated superior catalytic activities for heterogeneous PS activation, whereas fullerene (C60), nanodiamonds, and graphitic carbon nitride (g-C3N4) presented low efficiencies. Moreover, the carbocatalysts presented even better catalytic performances than activated carbon and metal oxides, such as Fe3O4, CuO, Co3O4, and MnO2. The activity of prepared rGO-900 was further competing to the most efficient electron donor of zerovalent iron (ZVI). Both characterization and oxidation results suggested that the catalytic performances of the nanocarbons are determined by the intrinsic atom arrangements of carbon hybridization, pore structure, defective sites, and functional groups (especially ...

597 citations


Journal ArticleDOI
TL;DR: In this article, electrophoretic deposition of thin films of an appropriately chosen metal-organic framework (MOF) material is an effective method for immobilizing the needed quantity of catalyst.
Abstract: Realization of heterogeneous electrochemical CO2-to-fuel conversion via molecular catalysis under high-flux conditions requires the assembly of large quantities of reactant-accessible catalysts on conductive surfaces. As a proof of principle, we demonstrate that electrophoretic deposition of thin films of an appropriately chosen metal–organic framework (MOF) material is an effective method for immobilizing the needed quantity of catalyst. For electrocatalytic CO2 reduction, we used a material that contains functionalized Fe-porphyrins as catalytically competent, redox-conductive linkers. The approach yields a high effective surface coverage of electrochemically addressable catalytic sites (∼1015 sites/cm2). The chemical products of the reduction, obtained with ∼100% Faradaic efficiency, are mixtures of CO and H2. These results validate the strategy of using MOF chemistry to obtain porous, electrode-immobilized, networks of molecular catalysts having competency for energy-relevant electrochemical reactions.

595 citations


Journal ArticleDOI
TL;DR: Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials as mentioned in this paper, which can be used to elucidate reaction mechanisms and catalyst structure-property relationships by creating materials with a controlled distribution of size, composition, and active site.
Abstract: Atomic layer deposition (ALD) has emerged as an interesting tool for the atomically precise design and synthesis of catalytic materials. Herein, we discuss examples in which the atomic precision has been used to elucidate reaction mechanisms and catalyst structure–property relationships by creating materials with a controlled distribution of size, composition, and active site. We highlight ways ALD has been utilized to design catalysts with improved activity, selectivity, and stability under a variety of conditions (e.g., high temperature, gas and liquid phase, and corrosive environments). In addition, due to the flexibility and control of structure and composition, ALD can create myriad catalytic structures (e.g., high surface area oxides, metal nanoparticles, bimetallic nanoparticles, bifunctional catalysts, controlled microenvironments, etc.) that consequently possess applicability for a wide range of chemical reactions (e.g., CO2 conversion, electrocatalysis, photocatalytic and thermal water splitting...

Journal ArticleDOI
TL;DR: In this article, a simple approach to the preparation of cobalt sulfide nanoparticles in situ grown on a nitrogen and sulfur codoped graphene oxide surface was presented, where the particle size and phase were controlled by changing the treatment temperature.
Abstract: Electrochemical oxygen evolution and reduction reactions have received great attention due to their importance in several key technologies such as fuel cells, electrolyzers, and metal–air batteries. Here, we present a simple approach to the preparation of cobalt sulfide nanoparticles in situ grown on a nitrogen and sulfur codoped graphene oxide surface. The particle size and phase were controlled by changing the treatment temperature. Cobalt sulfide nanoparticles dispersed on graphene oxide hybrids were successfully prepared by a solid-state thermolysis approach at different temperatures (400, 500, and 600 °C) using cobalt thiourea and graphene oxide. X-ray diffraction studies revealed that hybrids prepared at 400 and 500 °C result in pure CoS2 phase, whereas the hybrid prepared at 600 °C exhibits Co9S8 phase. X-ray photoelectron spectroscopy studies revealed that nitrogen and sulfur simultaneously codoped on the graphene oxide surface, and these sites act to anchor the CoS2 nanoparticles strongly on the ...


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the contribution of intrinsic carbon defects to oxygen reduction reaction (ORR) and reported that pentagon and zigzag edge defects are responsible for ORR activity.
Abstract: While the field of carbon-based metal-free electrocatalysts for oxygen reduction reaction (ORR) has experienced great progress in recent years, the fundamental issue of the origin of ORR activity is far from being clarified. To date, the ORR activities of these electrocatalysts are usually attributed to different dopants, while the contribution of intrinsic carbon defects has been explored little. Herein, we report the high ORR activity of the defective carbon nanocages, which is better than that of the B-doped carbon nanotubes and comparable to that of the N-doped carbon nanostructures. Density functional theory calculations indicate that pentagon and zigzag edge defects are responsible for the high ORR activity. The mutually corroborated experimental and theoretical results reveal the significant contribution of the intrinsic carbon defects to ORR activity, which is crucial for understanding the ORR origin and exploring the advanced carbon-based metal-free electrocatalysts.

Journal ArticleDOI
TL;DR: In this paper, a new class of heteroatom-doped metal-free carbon catalysts has been developed, which, as alternative ORR catalysts, could dramatically reduce the cost and increase the efficiency of fuel cells and metal-air batteries.
Abstract: The oxygen reduction reaction (ORR) plays an important role in renewable energy technologies, such as fuel cells and metal–air batteries. Along with the extensive research and development of nonprecious metal catalysts (NPMCs) to reduce/replace Pt for electrocatalytic reduction of oxygen, a new class of heteroatom-doped metal-free carbon catalysts has been recently developed, which, as alternative ORR catalysts, could dramatically reduce the cost and increase the efficiency of fuel cells and metal–air batteries. The improved catalytic performance of heteroatom-doped carbon ORR catalysts has been attributed to the doping-induced charge redistribution around the heteroatom dopants, which lowered the ORR potential and changed the O2 chemisorption mode to effectively weaken the O–O bonding, facilitating ORR at the heteroatom-doped carbon electrodes. Subsequently, this new metal-free ORR mechanism was confirmed by numerous studies, and the same principle has been applied to the development of various other eff...

Journal ArticleDOI
TL;DR: In this article, a series of Ag alloyed Pd single-atom catalysts, supported on silica gel, were prepared by a simple incipient wetness co-impregnation method and applied to the selective hydrogenation of acetylene in an ethylene-rich stream under conditions close to the front-end employed by industry.
Abstract: Semihydrogenation of acetylene in an ethylene-rich stream is an industrially important process. Conventional supported monometallic Pd catalysts offer high acetylene conversion, but they suffer from very low selectivity to ethylene due to overhydrogenation and the formation of carbonaceous deposits. Herein, a series of Ag alloyed Pd single-atom catalysts, possessing only ppm levels of Pd, supported on silica gel were prepared by a simple incipient wetness coimpregnation method and applied to the selective hydrogenation of acetylene in an ethylene-rich stream under conditions close to the front-end employed by industry. High acetylene conversion and simultaneous selectivity to ethylene was attained over a wide temperature window, surpassing an analogous Au alloyed Pd single-atom system we previously reported. Restructuring of AgPd nanoparticles and electron transfer from Ag to Pd were evidenced by in situ FTIR and in situ XPS as a function of increasing reduction temperature. Microcalorimetry and XANES measurements support both geometric and electronic synergetic effects between the alloyed Pd and Ag. Kinetic studies provide valuable insight into the nature of the active sites within these AgPd/SiO2 catalysts, and hence, they provide evidence for the key factors underpinning the excellent performance of these bimetallic catalysts toward the selective hydrogenation of acetylene under ethylene-rich conditions while minimizing precious metal usage.

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the catalytic synthesis of 2,5-furandicarboxylic acid (FDCA) from renewable biomass or biomass-derived platform chemicals.
Abstract: Catalytic synthesis of value-added chemicals from renewable biomass or biomass-derived platform chemicals is an important way to reduce current dependence on fossil-fuel resources. In recent years, 2,5-furandicarboxylic acid (FDCA) has received significant attention due to its wide application in many fields, particularly as a substitute of petrochemical-derived terephthalic acid in the synthesis of useful polymers. Therefore, much effort has been devoted to the catalytic synthesis of FDCA. In this critical review, we will provide an overview of concise and up-to-date methods for the synthesis of FDCA from HMF oxidation or directly from carbohydrates by one-pot reaction, giving special attention to catalytic systems, mechanistic insight, reaction pathway, and catalyst stability. In addition, the one-pot oxidative conversion of carbohydrates into FDCA and the one-pot synthesis of FDCA derivatives are also discussed. It is anticipated that the chemistry detailed in this review will guide researchers to deve...

Journal ArticleDOI
TL;DR: In this paper, the authors proposed ultrathin MoS2(1-x)Se2x alloy nanoflakes with monolayer or few-layer thickness and fully tunable chemical composition for maximum hydrogen evolution reaction (HER) activity.
Abstract: The development of non precious metal based electrocatalysts for the hydrogen evolution reaction (HER) holds a decisive key to a spectrum of energy conversion technologies. Previous studies have established layered molybdenum chalcogenides as promising candidates. In this work, we prepared ultrathin MoS2(1–x)Se2x alloy nanoflakes with monolayer or few-layer thickness and fully tunable chemical composition for maximum HER activity. Spectroscopic characterizations corroborate the progressive evolution of their structures and properties as x increases from 0 to 1 without any noticeable phase separation. In particular, it is evidenced that the introduction of selenium continuously modulates the d band electronic structure of molybdenum, probably leading to tuned hydrogen adsorption free energy and consequently electrocatalytic activity. Electrochemical measurements show that all MoS2(1–x)Se2x nanoflakes are highly active and durable for HER with small overpotentials in the range of 80–100 mV and negligible ac...

Journal ArticleDOI
TL;DR: In this paper, the authors provided a thorough characterization of Ni-based double hydroxides with Cr, Mn, Fe, Co, Cu, and Zn at the atomic scale and provided simple design principles for the enhancement of their electrocatalytic properties.
Abstract: The oxygen evolution reaction (OER) is one of the major bottlenecks hindering the implementation of a global economy based on solar fuels. It is known that Ni-based catalysts exhibit remarkable catalytic activities for the OER in alkaline media. In this joint theoretical–experimental study, we provide a thorough characterization of Ni-based double hydroxides with Cr, Mn, Fe, Co, Cu, and Zn at the atomic scale that not only explains the reasons for their high activity but also provides simple design principles for the enhancement of their electrocatalytic properties. Our approach, based on the local symmetry and composition of the active sites, helps rationalize the effect of dopants on the catalytic activity of Ni(OH)2. In particular, NiFe, NiCr, and NiMn double hydroxides (DHs) have superior catalytic activity, which reduce the OER potential to reach 0.5 mA cm–2 by 230, 190, and 160 mV, respectively, in comparison to IrO2 nanoparticles, the state-of-the-art benchmarking catalysts, with 90% Faradaic effic...

Journal ArticleDOI
TL;DR: In this article, the authors combine experimental and computational efforts to explore the electrocatalytic reaction mechanism of CO2 reduction on nanostructured Ag catalyst surfaces in an aqueous electrolyte.
Abstract: Electroreduction of CO2 in a highly selective and efficient manner is a crucial step toward CO2 utilization. Nanostructured Ag catalysts have been found to be effective candidates for CO2 to CO conversion. In this report, we combine experimental and computational efforts to explore the electrocatalytic reaction mechanism of CO2 reduction on nanostructured Ag catalyst surfaces in an aqueous electrolyte. In contrast to bulk Ag catalysts, both nanoparticle and nanoporous Ag catalysts show enhanced ability to reduce the activation energy of the CO2 to COOHads intermediate step through the low-coordinated Ag surface atoms, resulting in a reaction mechanism involving a fast first electron and proton transfer followed by a slow second proton transfer as the rate-limiting step.

Journal ArticleDOI
TL;DR: In this paper, the effect of Sm on the physicochemical properties of the Sm-MnOx catalyst were investigated by XRD, low-temperature N2 adsorption, XPS, and FE-SEM techniques.
Abstract: Sm-Mn mixed oxide catalysts prepared by the coprecipitation method were developed, and their catalytic activities were tested for the selective catalytic reduction (SCR) of NO with ammonia at low temperature. The results showed that the amount of Sm markedly influenced the activity of the MnOx catalyst for SCR, that the activity of the Sm-Mn mixed oxide catalyst exhibited a volcano-type tendency with an increase in the Sm content, and that the appropriate mole ratio of Sm to Mn in the catalyst was 0.1. In addition, the presence of Sm in the MnOx catalyst can obviously enhance both water and sulfur dioxide resistances. The effect of Sm on the physiochemical properties of the Sm-MnOx catalyst were investigated by XRD, low-temperature N2 adsorption, XPS, and FE-SEM techniques. The results showed that the presence of Sm in the Sm-MnOx catalyst can restrain the crystallization of MnOx and increase its surface area and the relative content of both Mn4+ and surface oxygen (OS) on the surface of the Sm-MnOx catal...

Journal ArticleDOI
TL;DR: In this article, a support-free porous Co-N-C nanopolyhedron electrocatalysts were synthesized by pyrolysis of a Zn/Co bi-MOF without any post-treatments.
Abstract: The development of low-cost catalysts with oxygen reduction reaction (ORR) activity superior to that of Pt for fuel cells is highly desirable but remains challenging. Herein, we report a bimetal–organic framework (bi-MOF) self-adjusted synthesis of support-free porous Co–N–C nanopolyhedron electrocatalysts by pyrolysis of a Zn/Co bi-MOF without any post-treatments. The presence of initial Zn forms a spatial isolation of Co that suppresses its sintering during pyrolysis, and Zn evaporation also promotes the surface area of the resultant catalysts. The composition, morphology, and hence ORR activity of Co–N–C could be tuned by the Zn/Co ratio. The optimal Co–N–C exhibited remarkable ORR activity with a half-wave potential of 0.871 V versus the reversible hydrogen electrode (RHE) (30 mV more positive than that of commercial 20 wt % Pt/C) and a kinetic current density of 39.3 mA cm–2 at 0.80 V versus RHE (3.1 times that of Pt/C) in 0.1 M KOH, and excellent stability and methanol tolerance. It also demonstrate...

Journal ArticleDOI
Abstract: Electrochemical water splitting in alkaline solution plays a growing role in alternative energy devices due to the need for clean and sustainable energy. However, catalysts that are active for both hydrogen evolution and oxygen evolution reactions are rare. Herein, we demonstrate that cobalt phosphide (CoP), which was synthesized via the hydrothermal route and has been shown to have hydrogen evolution activity, is highly active for oxygen evolution. A current density of 10 mA cm–2 was generated at an overpotential of only 320 mV in 1 M KOH for a CoP nanorod-based electrode (CoP NR/C), which was competitive with commercial IrO2. The Tafel slope for CoP NR/C was only 71 mV dec–1, and the catalyst maintained high stability during a 12 h test. This high activity was attributed to the formation of a thin layer of ultrafine crystalline cobalt oxide on the CoP surface.

Journal ArticleDOI
TL;DR: In this paper, a novel Co-based oxygen evolution catalyst generated in situ from cobalt phosphide (CoP) nanoparticles is revealed to experience unique metamorphosis upon anodic potential cycling in an alkaline electrolyte, engendering efficient and robust catalytic environments toward the oxygen evolution reaction.
Abstract: Reported herein is elucidation of a novel Co-based oxygen evolution catalyst generated in situ from cobalt phosphide (CoP) nanoparticles. The present CoP nanoparticles, efficient alkaline hydrogen-evolving materials at the cathode, are revealed to experience unique metamorphosis upon anodic potential cycling in an alkaline electrolyte, engendering efficient and robust catalytic environments toward the oxygen evolution reaction (OER). Our extensive ex situ characterization shows that the transformed catalyst bears porous and nanoweb-like dispersed morphologies along with unique microscopic environments mainly consisting of discrete cobalt-oxo/hydroxo molecular units within a phosphate-enriched amorphous network. Outstanding OER efficiency is achievable with the activated catalyst, which is favorably comparable to even a precious iridium catalyst. A more remarkable feature is its outstanding long-term stability, superior to iridium and conventional cobalt oxide-based materials. Twelve-hour bulk electrolysis...

Journal ArticleDOI
TL;DR: In this paper, the authors used first-principles calculations to identify active sites for the CO2 reduction reaction for Ag and Au metals, the two metals that have been shown to be the most active in producing CO.
Abstract: Highly active and selective CO2 conversion into useful chemicals is desirable to generate valuable products out of greenhouse gases. To date, various metal-based heterogeneous catalysts have shown promising electrochemical catalytic activities for CO2 reduction, yet there have been no systematic studies of the active sites of these metal catalysts that can guide further experiments. In this study, we use first-principles calculations to identify active sites for the CO2 reduction reaction for Ag and Au metals, the two metals that have been shown to be the most active in producing CO. We compare the catalytic activity and selectivity of three reaction sites of nanoparticles, namely, low-index surfaces, edge sites, and corner sites of these metals. For nanoparticle corner sites, in particular, we find that the size effect is critical, and 309-atom (or larger) nanoparticles should be used to appropriately describe realistic metal nanocatalysts. However, a 55-atom cluster model is often used in the literature...

Journal ArticleDOI
TL;DR: In this paper, a simple protonation method was proposed to improve the activity of g-C3N4 and showed that the promotion of catalytic ability originates from the higher thermodynamic driving force and longer-lived charge separation state, which may provide guidance in designing efficient polymeric semiconductor photocatalysts with desirable kinetics for water oxidation.
Abstract: Photocatalysts based on g-C3N4 by loading cocatalysts or constructing heterojunctions have shown great potential in solar-driven water oxidation. However, the intrinsic drawbacks of g-C3N4, such as poor mass diffusion and charge separation efficiency, remain as the bottleneck to achieve highly efficient water oxidation. Here we report a simple protonation method to improve the activity of g-C3N4. Studies using valence band X-ray photoelectron spectra and steady-state and time-resolved spectroscopy reveal that the promotion of catalytic ability originates from the higher thermodynamical driving force and longer-lived charge separation state, which may provide guidance in designing efficient polymeric semiconductor photocatalysts with desirable kinetics for water oxidation.

Journal ArticleDOI
TL;DR: In this article, the standard and fast selective catalytic reduction (SCR) of NO by NH3 are described in a complete catalytic cycle that is able to produce the correct stoichiometry while allowing adsorption and desorption of stable molecules only.
Abstract: For the first time, the standard and fast selective catalytic reduction (SCR) of NO by NH3 are described in a complete catalytic cycle that is able to produce the correct stoichiometry while allowing adsorption and desorption of stable molecules only. The standard SCR reaction is a coupling of the activation of NO by O2 with the fast SCR reaction, enabled by the release of NO2. According to the scheme, the SCR reaction can be divided into an oxidation of the catalyst by NO + O2 and a reduction by NO + NH3; these steps together constitute a complete catalytic cycle. Furthermore, both NO and NH3 are required in the reduction, and finally, oxidation by NO + O2 or NO2 leads to the same state of the catalyst. These points are shown experimentally for a Cu-CHA catalyst by combining in situ X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and Fourier transform infrared spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the s...

Journal ArticleDOI
TL;DR: In this article, the authors focused on three new approaches, namely, the cross-coupling of alcohols with amines, the self coupling of primary amines and the oxidative dehydrogenation of secondary amines.
Abstract: Imines as valuable intermediates are widely applied in pharmaceutical syntheses and organic transformation. However, the traditional imine synthesis involves unstable aldehydes, dehydrating agents, and Lewis acid catalysts. The topic of this review is focused on three new approaches, namely, the cross-coupling of alcohols with amines, the self-coupling of primary amines, and the oxidative dehydrogenation of secondary amines, utilizing much more readily available starting materials and green oxidant (O2/air) to furnish the imine products. The related catalysts are classified into metal, metal-free, photo-, and bioinspired catalysts. Particular emphasis is placed on the high-activity, low-cost, and versatile catalysts; key factors that affect the catalytic activity and reaction mechanisms are also highlighted.

Journal ArticleDOI
TL;DR: In this paper, the authors showed that PdxPt(100-x)/C nanoparticles have a very low onset potential for the reduction of CO2 to formic acid of ca. 0 V vs RHE.
Abstract: The electrochemical reduction of CO2 has attracted significant interest recently, as it is a possible reaction for the storage of renewable energy. Here, we report on the synthesis of PdxPt(100–x)/C nanoparticles and their electrocatalytic properties for the reduction of CO2 to formic acid, compared with their activity for the reverse oxidation of formic acid to CO2. We find that PdxPt(100–x)/C nanoparticles have a very low onset potential for the reduction of CO2 to formic acid of ca. 0 V vs RHE, which approaches the theoretical equilibrium potential of 0.02 V vs RHE for this reaction. Furthermore, the Pd70Pt30/C catalyst shows a faradaic efficiency of 88% toward formic acid after 1 h of electrolysis at −0.4 V vs RHE with an average current density of ∼5 mA/cm2. Therefore, this catalyst shows a competing or even better faradaic efficiency toward formic acid compared to recently reported catalysts, at a substantially lower overpotential, while avoiding a strong deactivation that was observed with previous...

Journal ArticleDOI
TL;DR: In this paper, a perspective article summarizes the recent development of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.
Abstract: There is a need to reduce the use of noble metal elements—especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties—for example, redox behavior, oxygen mobility, and ionic conductivity—for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This perspective article summarizes the recent development of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.