scispace - formally typeset
Search or ask a question
JournalISSN: 1948-5875

ACS Medicinal Chemistry Letters 

American Chemical Society
About: ACS Medicinal Chemistry Letters is an academic journal published by American Chemical Society. The journal publishes majorly in the area(s): Medicine & Chemistry. It has an ISSN identifier of 1948-5875. Over the lifetime, 3498 publications have been published receiving 70322 citations. The journal is also known as: American Chemical Society medicinal chemistry letters & Medicinal chemistry letters.


Papers
More filters
Journal ArticleDOI
TL;DR: This work has identified highly potent, selective, SAM-competitive, and cell-active EZH2 inhibitors, including GSK926 and GSK343, which are small molecule chemical tools that would be useful to further explore the biology of EZh2.
Abstract: The histone H3-lysine 27 (H3K27) methyltransferase EZH2 plays a critical role in regulating gene expression, and its aberrant activity is linked to the onset and progression of cancer. As part of a drug discovery program targeting EZH2, we have identified highly potent, selective, SAM-competitive, and cell-active EZH2 inhibitors, including GSK926 (3) and GSK343 (6). These compounds are small molecule chemical tools that would be useful to further explore the biology of EZH2.

355 citations

Journal ArticleDOI
TL;DR: 2,4-Difluoro-N-{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3- pyridinyl}benzenesulfonamide (GSK2126458, 1) has been identified as a highly potent, orally bioavailable inhibitor of PI3Kα and mTOR with in vivo activity in both pharmacodynamic and tumor growth efficacy models.
Abstract: Phosphoinositide 3-kinase α (PI3Kα) is a critical regulator of cell growth and transformation, and its signaling pathway is the most commonly mutated pathway in human cancers. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of PI3K/AKT pathway inhibition. 2,4-Difluoro-N-{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl}benzenesulfonamide (GSK2126458, 1) has been identified as a highly potent, orally bioavailable inhibitor of PI3Kα and mTOR with in vivo activity in both pharmacodynamic and tumor growth efficacy models. Compound 1 is currently being evaluated in human clinical trials for the treatment of cancer.

331 citations

Journal ArticleDOI
TL;DR: Structural-activity relationship studies led to the discovery of a potent and specific Smoothened antagonist N-(6-((2S,6R)-2,6-dimethylmorpholino)pyridin-3-yl)-2-methyl-4'-(trifluoromethoxy)biphenyl- 3-carboxamide (5m, NVP-LDE225), which is currently in clinical development.
Abstract: The blockade of aberrant hedgehog (Hh) signaling has shown promise for therapeutic intervention in cancer. A cell-based phenotypic high-throughput screen was performed, and the lead structure (1) was identified as an inhibitor of the Hh pathway via antagonism of the Smoothened receptor (Smo). Structure−activity relationship studies led to the discovery of a potent and specific Smoothened antagonist N-(6-((2S,6R)-2,6-dimethylmorpholino)pyridin-3-yl)-2-methyl-4′-(trifluoromethoxy)biphenyl-3-carboxamide (5m, NVP-LDE225), which is currently in clinical development.

298 citations

Journal ArticleDOI
TL;DR: RG7112 is the first clinical small-molecule MDM2 inhibitor designed to occupy the p53-binding pocket ofMDM2, which stabilizes p53 and activates the p 53 pathway, leading to cell cycle arrest, apoptosis, and inhibition or regression of human tumor xenografts.
Abstract: The p53 tumor suppressor is a potent transcription factor that plays a key role in the regulation of cellular responses to stress It is controlled by its negative regulator MDM2, which binds directly to p53 and inhibits its transcriptional activity MDM2 also targets p53 for degradation by the proteasome Many tumors produce high levels of MDM2, thereby impairing p53 function Restoration of p53 activity by inhibiting the p53-MDM2 interaction may represent a novel approach to cancer treatment RG7112 (2g) is the first clinical small-molecule MDM2 inhibitor designed to occupy the p53-binding pocket of MDM2 In cancer cells expressing wild-type p53, RG7112 stabilizes p53 and activates the p53 pathway, leading to cell cycle arrest, apoptosis, and inhibition or regression of human tumor xenografts

295 citations

Journal ArticleDOI
TL;DR: AG-120 (ivosidenib), an inhibitor of the IDH1 mutant enzyme that exhibits profound 2-HG lowering in tumor models and the ability to effect differentiation of primary patient AML samples ex vivo is reported.
Abstract: Somatic point mutations at a key arginine residue (R132) within the active site of the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) confer a novel gain of function in cancer cells, resulting in the production of d-2-hydroxyglutarate (2-HG), an oncometabolite. Elevated 2-HG levels are implicated in epigenetic alterations and impaired cellular differentiation. IDH1 mutations have been described in an array of hematologic malignancies and solid tumors. Here, we report the discovery of AG-120 (ivosidenib), an inhibitor of the IDH1 mutant enzyme that exhibits profound 2-HG lowering in tumor models and the ability to effect differentiation of primary patient AML samples ex vivo. Preliminary data from phase 1 clinical trials enrolling patients with cancers harboring an IDH1 mutation indicate that AG-120 has an acceptable safety profile and clinical activity.

265 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023177
2022358
2021276
2020395
2019300
2018246