scispace - formally typeset
Search or ask a question

Showing papers in "ACS Sensors in 2018"


Journal ArticleDOI
TL;DR: This Review aims to comprehend the sensing mechanisms and the synergistic effects of various hybridizations of 2D TMDs and metal oxides, and to clearly understand the collective benefits of TMD's and metal oxide hybrids.
Abstract: Two-dimensional (2D) nanomaterials have demonstrated great potential in the field of gas sensing due to their layered structures. Especially for 2D transition metal dichalcogenides (TMDs), inherent high surface areas and their unique semiconducting properties with tunable band gaps make them compelling for sensing applications. In combination with the general benefits of 2D nanomaterials, the incorporation of metal oxides into 2D TMDs is a recent approach for improving the gas sensing performance of these materials by the synergistic effects of the hybridization. This Review aims to comprehend the sensing mechanisms and the synergistic effects of various hybridizations of 2D TMDs and metal oxides. The Review begins with the gas sensing mechanisms and synthesis methods of 2D TMDs. Achievements in recent research on 2D TMDs and their metal oxide hybrids for sensor applications are then comprehensively compiled. To clearly understand the collective benefits of TMDs and metal oxide hybrids, the hybridization effects are discussed in three aspects: geometrical, electronic, and chemical effects.

305 citations


Journal ArticleDOI
TL;DR: The accuracy and matrix effect of PEC aptasensor was evaluated for the determination of human serum specimens and newborn calf serum-diluted PSA standards, giving a well-matched result with the referenced PSA ELISA kit.
Abstract: A competitive-displacement reaction strategy based on target-induced dissociation of gold nanoparticle coated graphene nanosheet (AuNPs/GN) from CdS quantum dot functionalized mesoporous titanium dioxide (CdS QDs/TiO2) was designed for the sensitive photoelectrochemical (PEC) aptasensing of prostate-specific antigen (PSA) through the exciton–plasmon interaction (EPI) between CdS QDs and AuNPs. To construct such an aptasensing system, capture DNA was initially conjugated covalently onto CdS QDs/TiO2-modified electrode, and then AuNPs/GN-labeled PSA aptamer was bound onto biofunctionalized CdS QDs/TiO2 via hybridization chain reaction of partial bases with capture DNA. Introduction of AuNPs/GN efficiently quenched the photocurrent of CdS QDs/TiO2 thanks to energy transfer. Upon addition of target PSA, the sandwiched aptamer between CdS QDs/TiO2 and AuNPs/GN reacted with the analyte analyte, thus resulting in the dissociation of AuNPs/GN from the CdS QDs/TiO2 to increase the photocurrent. Under optimum condi...

256 citations


Journal ArticleDOI
TL;DR: A flexible microfluidic sweat sensing patch that enhances real-time electrochemical sensing and sweat rate analysis via sweat sampling and electrochemical detection and facilitates physiological and clinical investigations by closely monitoring interrelated sweat parameters.
Abstract: Wearable sweat sensing is a rapidly rising research area driven by its promising potential in health, fitness, and diagnostic applications. Despite the growth in the field, major challenges in relation to sweat metrics remain to be addressed. These challenges include sweat rate monitoring for its complex relation with sweat compositions and sweat sampling for sweat dynamics studies. In this work, we present a flexible microfluidic sweat sensing patch that enhances real-time electrochemical sensing and sweat rate analysis via sweat sampling. The device contains a spiral-patterned microfluidic component that is embedded with ion-selective sensors and an electrical impedance-based sweat rate sensor on a flexible plastic substrate. The patch is enabled to autonomously perform sweat analysis by interfacing the sensing component with a printed circuit board that is capable of on-site signal conditioning, analysis, and transmission. Progressive sweat flow in the microfluidic device, governed by the pressure indu...

250 citations


Journal ArticleDOI
TL;DR: Self-powered electrochemical biosensors utilize biofuel cells as a simultaneous power source and biosensor, which simplifies the biosensor system, because it no longer requires a potentiostat, power for the potentiOSTat, and/or power forThe signaling device.
Abstract: Self-powered electrochemical biosensors utilize biofuel cells as a simultaneous power source and biosensor, which simplifies the biosensor system, because it no longer requires a potentiostat, power for the potentiostat, and/or power for the signaling device. This review article is focused on detailing the advances in the field of self-powered biosensors and discussing their advantages and limitations compared to other types of electrochemical biosensors. The review will discuss self-powered biosensors formed from enzymatic biofuel cells, organelle-based biofuel cells, and microbial fuel cells. It also discusses the different mechanisms of sensing, including utilizing the analyte being the substrate/fuel for the biocatalyst, the analyte binding the biocatalyst to the electrode surface, the analyte being an inhibitor of the biocatalyst, the analyte resulting in the blocking of the bioelectrocatalytic response, the analyte reactivating the biocatalyst, Boolean logic gates, and combining affinity-based biore...

203 citations


Journal ArticleDOI
TL;DR: The superior gas sensing properties of the In2O3/1%Co nanorods were mainly attributed to the incorporation of Co, which suggested the important role of the amount of oxygen vacancies and adsorbed oxygen in enhancing HCHO sensing performance of In 2O3 sensors.
Abstract: Uniform and monodisperse Co-doped In2O3 nanorods were fabricated by a facile and environmentally friendly hydrothermal strategy that combined the subsequent annealing process, and their morphology, structure, and formaldehyde (HCHO) gas sensing performance were investigated systematically. Both pure and Co-doped In2O3 nanorods had a high specific surface area, which could offer abundant reaction sites to gas molecular diffusion and improve the response of the gas sensor. Results revealed that the In2O3/1%Co nanorods exhibited a higher response of 23.2 for 10 ppm of HCHO than that of the pure In2O3 nanorods by 4.5 times at 130 °C. More importantly, the In2O3/1%Co nanorods also presented outstanding selectivity and long-term stability. The superior gas sensing properties were mainly attributed to the incorporation of Co, which suggested the important role of the amount of oxygen vacancies and adsorbed oxygen in enhancing HCHO sensing performance of In2O3 sensors.

186 citations


Journal ArticleDOI
TL;DR: Repeated experiments confirm a big leap in performance thanks to the capability to detect femtomolar concentrations in human serum, improving the detection limit by 3 orders of magnitude when compared with other fiber-based configurations.
Abstract: The advent of optical fiber-based biosensors combined with that of nanotechnologies has provided an opportunity for developing in situ, portable, lightweight, versatile, and high-performance optical sensing platforms. We report on the generation of lossy mode resonances by the deposition of nanometer-thick metal oxide films on optical fibers, which makes it possible to measure precisely and accurately the changes in optical properties of the fiber-surrounding medium with very high sensitivity compared to other technology platforms, such as long period gratings or surface plasmon resonances, the gold standard in label-free and real-time biomolecular interaction analysis. This property, combined with the application of specialty structures such as D-shaped fibers, permits enhancing the light–matter interaction. SEM and TEM imaging together with X-EDS tool have been utilized to characterize the two films used, i.e., indium tin oxide and tin dioxide. Moreover, the experimental transmission spectra obtained af...

172 citations


Journal ArticleDOI
TL;DR: This review describes in a comprehensive manner recent progress that has been made on the development of chromophore-based chemosensors for detecting nerve agents (mimic) and phosgene.
Abstract: The extreme toxicity and ready accessibility of nerve agents and phosgene has caused an increase in the demand to develop effective systems for the detection of these substances. Among the traditional platforms utilized for this purpose, chemosensors including surface acoustic wave (SAW) sensors, enzymes, carbon nanotubes, nanoparticles, and chromophore based sensors have attracted increasing attention. In this review, we describe in a comprehensive manner recent progress that has been made on the development of chromophore-based chemosensors for detecting nerve agents (mimic) and phosgene. This review comprises two sections focusing on studies of the development of chemosensors for nerve agents (mimic) and phosgene. In each of the sections, the discussion follows a format which concentrates on different reaction sites/mechanisms involved in the sensing processes. Finally, chemosensors uncovered in these efforts are compared with those based on other sensing methods and challenges facing the design of mor...

172 citations


Journal ArticleDOI
TL;DR: This Review is focused on the current electrochemical-based microorganism recognition approaches and putting them into context of other sensing devices for pathogens, including the utilization of microfluidic devices and immunomagnetic separation for multiple pathogen analysis in a single device.
Abstract: Bacterial infections remain one of the principal causes of morbidity and mortality worldwide. The number of deaths due to infections is declining every year by only 1% with a forecast of 13 million deaths in 2050. Among the 1400 recognized human pathogens, the majority of infectious diseases is caused by just a few, about 20 pathogens only. While the development of vaccinations and novel antibacterial drugs and treatments are at the forefront of research, and strongly financially supported by policy makers, another manner to limit and control infectious outbreaks is targeting the development and implementation of early warning systems, which indicate qualitatively and quantitatively the presence of a pathogen. As toxin contaminated food and drink are a potential threat to human health and consequently have a significant socioeconomic impact worldwide, the detection of pathogenic bacteria remains not only a big scientific challenge but also a practical problem of enormous significance. Numerous analytical ...

160 citations


Journal ArticleDOI
TL;DR: To overcome selectivity barriers, sensor arrays enabling multimodal sensing, have been used with pattern recognition techniques, and the use of various forms of nanomaterial not only enhances sensing performance, but also plays a major role in detection on a miniaturized scale.
Abstract: The chemical signatures of volatile organic compounds (VOCs) in humans can be utilized for point-of-care (POC) diagnosis. Apart from toxic exposure studies, VOCs generated in humans can provide insights into one’s healthy and diseased metabolic states, acting as a biomarker for identifying numerous diseases noninvasively. VOC sensors and the technology of e-nose have received significant attention for continuous and selective monitoring of various physiological and pathophysiological conditions of an individual. Noninvasive detection of VOCs is achieved from biomatrices of breath, sweat and saliva. Among these, detection from sweat and saliva can be continuous in real-time. The sensing approaches include optical, chemiresistive and electrochemical techniques. This article provides an overview of such techniques. These, however, have limitations of reliability, precision, selectivity, and stability in continuous monitoring. Such limitations are due to lack of sensor stability and complexity of samples in a...

153 citations


Journal ArticleDOI
TL;DR: Results indicate that this paper-based SERS sensor with a hydrophobicity-modified filter paper can serve for highly sensitive pesticide detection with low cost and easy fabrication.
Abstract: As a cost-effective approach for detecting trace amounts of pesticides, filter paper-based SERS sensors have been the subject of intensive research. One of the hurdles to overcome is the difficulty of retaining nanoparticles on the surface of the paper because of the hydrophilic nature of the cellulose fibers in paper. This reduces the sensitivity and reproducibility of paper-based SERS sensors due to the low density of nanoparticles and short retention time of analytes on the paper surface. In this study, filter paper was treated with alkyl ketene dimer (AKD) to modify its property from hydrophilic to hydrophobic. AKD treatment increased the contact angle of the aqueous silver nanoparticle (AgNP) dispersion, which consequently increased the density of AgNPs. The retention time of the analyte was also increased by preventing its rapid absorption into the filter paper. The SERS signal was strongly enhanced by the increased number of SERS hot spots owing to the increased density of AgNPs on a small contact ...

151 citations


Journal ArticleDOI
TL;DR: A simple and effective strategy to construct a molecular imprinting ratiometric fluorescence sensor (MIR sensor) for the visual detection of bovine hemoglobin (BHb) used as a model protein that can selectively bind with BHb and quench the fluorescence of the green and red QDs.
Abstract: We describe a simple and effective strategy to construct a molecular imprinting ratiometric fluorescence sensor (MIR sensor) for the visual detection of bovine hemoglobin (BHb) used as a model protein. The sensor was prepared by simply mixing the solution of green and red CdTe quantum dots (QDs), which were embedded in core–shell structured molecularly imprinted polymers and silica nanoparticles, respectively. The resultant hybrid MIR sensor can selectively bind with BHb and thus quench the fluorescence of the green QDs, while the red QDs wrapped with silica are insensitive to BHb with the fluorescence intensity unchanged. As a result, a continuous obvious fluorescence color change from green to red can be observed by naked eyes, with the detection limit of 9.6 nM. Moreover, the MIR sensor was successfully applied to determine BHb in bovine urine samples with satisfactory recoveries at three spiking levels ranging from 95.7 to 101.5%, indicating great potential application for detecting BHb in real sample...

Journal ArticleDOI
TL;DR: The role of favorable adsorption sites in MoS2 flakes for the enhanced interaction of target gases is revealed and a highly sensitive, reversible, and fast gas sensor for next-generation toxic gases at room temperature is developed.
Abstract: Toxic gases are produced during the burning of fossil fuels. Room temperature (RT) fast detection of toxic gases is still challenging. Recently, MoS2 transition metal dichalcogenides have sparked great attention in the research community due to their performance in gas sensing applications. However, MoS2 based gas sensors still suffer from long response and recovery times, especially at RT. Considering this challenge, here, we report photoactivated highly reversible and fast detection of NO2 sensors at room temperature (RT) by using mixed in-plane and edge-enriched p-MoS2 flakes (mixed MoS2). The sensor showed fast response with good sensitivity of ∼10.36% for 10 ppm of NO2 at RT without complete recovery. However, complete recovery was obtained with better sensor performance under UV light illumination at RT. The UV assisted NO2 sensing showed improved performance in terms of fast response and recovery kinetics with enhanced sensitivity to 10 ppm NO2 concentration. The sensor performance is also investig...

Journal ArticleDOI
TL;DR: A detailed review of the published literature regarding the concentration of 12 primary stress-induced biomarkers found in several bodily fluids that can serve as the medium for determination of the condition of the subject: blood, urine, saliva, sweat, and, to a lesser degree, interstitial tissue fluid.
Abstract: Hormones produced by glands in the endocrine system and neurotransmitters produced by the nervous system control many bodily functions. The concentrations of these molecules in the body are an indi...

Journal ArticleDOI
TL;DR: The novel aptasensor, based on sulfur-nitrogen codoped ordered mesoporous carbon and thymine-Hg2+-thymine mismatch structure, used ferrocene as signal molecules to achieve the conversion of current signals.
Abstract: A renewable electrochemical aptasensor was proposed for super-sensitive determination of Hg2+. The novel aptasensor, based on sulfur-nitrogen codoped ordered mesoporous carbon (SN-OMC) and thymine-Hg2+-thymine (T-Hg2+-T) mismatch structure, used ferrocene as signal molecules to achieve the conversion of current signals. In the absence of Hg2+, the thiol-modified T-rich probe 1 spontaneously formed a hairpin structure by base pairing. After being hybridized with the ferrocene-labeled probe 2 in the presence of Hg2+, the hairpin structure of probe 1 was opened due to the preferential formation of the T-Hg2+-T mismatch structure, and the ferrocene signal molecules approached the modified electrode surface. SN-OMC with high specific surface area and ample active sites acted as a signal amplification element in electrochemical sensing. The sensitive determination of Hg2+ can be actualized by analyzing the relationship between the change of oxidation current caused by ferrocene signal molecules and the Hg2+ concentrations. The aptasensor had a fine linear correlation in the range of 0.001-1000 nM with a detection limit of 0.45 pM. The aptasensor also displayed a good response in real sample detection and provided a promising possibility for in situ detection.

Journal ArticleDOI
Hyunku Shin1, Hyesun Jeong1, Jaena Park1, Sunghoi Hong1, Yeonho Choi1 
TL;DR: The correlation of nonsmall cell lung cancer cell-derived exosomes and potential protein markers are demonstrated by unique Raman scattering profiles and principal component analysis (PCA) for cancer diagnosis and will contribute to studies on exosomal surface protein markers for diagnosis of cancers.
Abstract: Exosomes, which are nanovesicles secreted by cells, are promising biomarkers for cancer diagnosis and prognosis, based on their specific surface protein compositions. Here, we demonstrate the correlation of nonsmall cell lung cancer (NSCLC) cell-derived exosomes and potential protein markers by unique Raman scattering profiles and principal component analysis (PCA) for cancer diagnosis. On the basis of surface enhanced Raman scattering (SERS) signals of exosomes from normal and NSCLC cells, we extracted Raman patterns of cancerous exosomes by PCA and clarified specific patterns as unique peaks through quantitative analysis with ratiometric mixtures of cancerous and normal exosomes. The unique peaks correlated well with cancerous exosome ratio (R2 > 90%) as the unique Raman band of NSCLC exosome. To examine the origin of the unique peaks, we compared these unique peaks with characteristic Raman bands of several exosomal protein markers (CD9, CD81, EpCAM, and EGFR). EGFR had 1.97-fold similarity in Raman pr...

Journal ArticleDOI
TL;DR: The results reveal the potential application of fabric based sensor for monitoring NH3 gas under ambient conditions and observe that PANI have a dual role in enhancing flexibility as well as improve the sensor performance toward ammonia.
Abstract: Polyaniline (PANI) functionalized multiwall carbon nanotubes (MWCNTs) were prepared via in situ chemical polymerization process of aniline, in which MWCNTs were spray coated on the fabric for wearable ammonia sensor. Structural, morphological, thermal properties and wettability were analyzed by scanning electron microscope, X-ray diffraction, Raman analysis and contact angle measurement. No substantial change in base resistance of MWCNTs/PANI fabric sensor was observed for a wide range of bending (from 90° to 270°) shows excellent wearability. The sensors were exposed to 20–100 ppm ammonia vapor at room temperature. It was observed that the sensing response of PANI coated MWCNTs was enhanced than MWCNTs and PANI. The sensor has the capability to detect ammonia with high sensitivity (92% for100 ppm), excellent selectivity quick response (9 s), and recovery time (30 s). The lower detection limit (LOD) for the MWCNTs/PANI fabric sensor was found to be 200 ppb. The influence of humidity on sensing parameters ...

Journal ArticleDOI
Enxiu Wu1, Yuan Xie1, Yuan Bo1, Hao Zhang1, Xiaodong Hu1, Jing Liu1, Daihua Zhang1 
TL;DR: An ultrasensitive p-type molybdenum ditelluride (MoTe2) gas sensor for NO2 detection with greatly enhanced sensitivity and recovery rate under ultraviolet (UV) illumination and exhibits excellent sensing performance to NO2 in ambient air and negligible response to H2O.
Abstract: The unique properties of two-dimensional (2D) materials make them promising candidates for chemical and biological sensing applications. However, most 2D material sensors suffer from extremely long recovery time due to the slow molecular desorption at room temperature. Here, we report an ultrasensitive p-type molybdenum ditelluride (MoTe2) gas sensor for NO2 detection with greatly enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Specifically, the sensitivity of the sensor to NO2 is dramatically enhanced by 1 order of magnitude under 254 nm UV illumination as compared to that in the dark condition, leading to a remarkable low detection limit of 252 ppt. More importantly, the p-type MoTe2 sensor can achieve full recovery after each sensing cycle well within 160 s at room temperature. Finally, the p-type MoTe2 sensor also exhibits excellent sensing performance to NO2 in ambient air and negligible response to H2O, indicating its great potential in practical applications, such as bre...

Journal ArticleDOI
TL;DR: Electrochemical method for rapid and sensitive detection of the herbicide paraquat in aqueous samples using mesoporous silica thin film modified glassy carbon electrodes revealed effective response to the cationic analyte and the key role of charge distribution in such confined spaces on these processes was pointed out.
Abstract: An electrochemical method was developed for rapid and sensitive detection of the herbicide paraquat in aqueous samples using mesoporous silica thin film modified glassy carbon electrodes (GCE). Vertically-aligned mesoporous silica thin films were deposited onto GCE by electrochemically assisted self-assembly (EASA). Cyclic voltammetry revealed effective response to the cationic analyte (while rejecting anions) thanks to the charge selectivity exhibited by the negatively-charged mesoporous channels. Square wave voltametry (SWV) was then used to detect paraquat via its one electron reduction process. Influence of various experimental parameters (i.e. pH, electrolyte concentration and nature of electrolyte anions) on sensitivity was investigated and discussed with respect to the mesopores characteristics and accumulation efficiency, pointing out the key role of charge distribution in such confined spaces on these processes. Calibration plots for paraquat concentration ranging from 10 nM - 10 µM were construc...

Journal ArticleDOI
TL;DR: This study presents a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework.
Abstract: Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal–organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO2 gas relative to other small gases (H2, N2, O2, and CO) with rapid (

Journal ArticleDOI
TL;DR: A benzothiazole-based aggregation-induced emission luminogen (AIEgen) was designed and synthesized, which exhibited multifluorescence emissions in different dispersed or aggregated states based on tunable excited-state intramolecular proton transfer (ESIPT) and restricted intramolescular rotation (RIR) processes.
Abstract: In this work, a benzothiazole-based aggregation-induced emission luminogen (AIEgen) of 2-(5-(4-carboxyphenyl)-2-hydroxyphenyl)benzothiazole (3) was designed and synthesized, which exhibited multifluorescence emissions in different dispersed or aggregated states based on tunable excited-state intramolecular proton transfer (ESIPT) and restricted intramolecular rotation (RIR) processes. 3 was successfully used as a ratiometric fluorescent chemosensor for the detection of pH, which exhibited reversible acid/base-switched yellow/cyan emission transition. More importantly, the pH jump of 3 was very precipitous from 7.0 to 8.0 with a midpoint of 7.5, which was well matched with the physiological pH. This feature makes 3 very suitable for the highly sensitive detection of pH fluctuation in biosamples and neutral water samples. 3 was also successfully used as a ratiometric fluorescence chemosensor for the detection of acidic and basic organic vapors in test papers.

Journal ArticleDOI
TL;DR: The first lysosome-targetable fluorescent probe, Lyso-RC, which could respond to Cys/Hcy, GSH, and H2S with different sets of signal patterns was developed was developed.
Abstract: Biothiols, a vital branch of reactive sulfur species (RSS) family, are indispensable in human physiology. However, the exact functional roles of each biothiol involved in complicated physiological activities are still not fully clarified. A critical barrier is a lack of robust molecular tools which can simultaneously visualize different biothiols with distinct emission signals. Herein, the first lysosome-targetable fluorescent probe, Lyso-RC, which could respond to Cys/Hcy, GSH, and H2S with different sets of signal patterns was developed. Lyso-RC responds to Cys/Hcy, GSH, and H2S with the fluorescence signal patterns of blue-red, green-red, and red, respectively. Significantly, Lyso-RC is capable of discriminating lysosomal Cys/Hcy, GSH, and H2S in HeLa cells.

Journal ArticleDOI
TL;DR: The compact SPR biosensor showed higher detection sensitivity than ELISA and similar sensing accuracy as ELISA, and is a simple and user-friendly sensing platform, which may serve as an in vitro diagnostic test for cancer.
Abstract: Exosomes are small extracellular vesicles released by cells for cell-cell communication. They play important roles in cancer development, metastasis, and drug resistance. Exosomal proteins have been demonstrated by many studies as promising biomarkers for cancer screening, diagnosis, and monitoring. Among many detection techniques, surface plasmon resonance (SPR) is a highly sensitive, label-free, and real-time optical detection method. Commercial prism-based wavelength/angular-modulated SPR sensors afford high sensitivity and resolution, but their large footprint and high cost limit their adaptability for clinical settings. Recently, a nanoplasmonic exosome (nPLEX) assay was developed to detect exosomal proteins for ovarian cancer diagnosis. However, comparing with conventional SPR biosensors, the broad applications of nanoplasmonic biosensors are limited by the difficult and expensive fabrication of nanostructures. We have developed an intensity-modulated, compact SPR biosensor (25 cm × 10 cm × 25 cm) which uses a conventional SPR sensing mechanism and does not require nanostructure fabrication. Calibration from glycerol showed that the compact SPR biosensor offered sensitivity of 9.258 × 103%/RIU and resolution of 8.311 × 10-6 RIU. We have demonstrated the feasibility of the compact SPR biosensor in lung cancer diagnosis using exosomal epidermal growth factor receptor (EGFR) and programmed death-ligand 1 (PD-L1) as biomarkers. It detected a higher level of exosomal EGFR from A549 nonsmall cell lung cancer (NSCLC) cells than BEAS-2B normal cells. With human serum samples, the compact SPR biosensor detected similar levels of exosomal EGFR in NSCLC patients and normal controls, and higher expression of exosomal PD-L1 in NSCLC patients than normal controls. The compact SPR biosensor showed higher detection sensitivity than ELISA and similar sensing accuracy as ELISA. It is a simple and user-friendly sensing platform, which may serve as an in vitro diagnostic test for cancer.

Journal ArticleDOI
TL;DR: In this paper, a review of the available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins is provided along with definitions and relevant considerations, along with an overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration.
Abstract: Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current...

Journal ArticleDOI
Lei Yang1, Yuanan Su1, Yani Geng1, Yun Zhang1, Xiaojie Ren1, Long He1, Xiangzhi Song1 
TL;DR: Through the blue-green-red emission color combination, Cys/Hcy, GSH/H2S, and thiophenol could be discriminatively detected in solution and in living cells.
Abstract: Thiols, such as cysteine (Cys), homocysteine (Hcy), glutathione (GSH), hydrogen sulfide (H2S), and thiophenol are metabolically correlated with each other via redox reactions. As a result of the similarity of chemical properties between Cys, Hcy, GSH, H2S, and thiophenol, it is very challenging to develop an effective methodology to differentiate them. In this work, a triple-emission fluorescent probe, NCQ, was reported for the simultaneous detection of Cys/Hcy, GSH/H2S, and thiophenol with high sensitivity and selectivity. The solution of NCQ displayed distinct fluorescent signals toward Cys/Hcy, GSH/H2S, and thiophenol: blue and green for Cys/Hcy, blue for GSH/H2S, blue and red for thiophenol. Through the blue–green–red emission color combination, Cys/Hcy, GSH/H2S, and thiophenol could be discriminatively detected in solution and in living cells.

Journal ArticleDOI
TL;DR: The sensing measurements showed different response times at different gas concentrations, good repeatability, ultrahigh sensitivity and fast recovery time, which shows the potential of hybrid lead halide based perovskites as reliable sensing elements, serving the objectives of environmental control, with important socioeconomic impact.
Abstract: Hybrid lead halide spin coated perovskite films have been successfully tested as portable, flexible, operated at room temperature, self-powered, and ultrasensitive ozone sensing elements. The electrical resistance of the hybrid lead mixed halide perovskite (CH3NH3PbI3–xClx) sensing element, was immediately decreased when exposed to an ozone (O3) environment and manage to recover its pristine electrical conductivity values within few seconds after the complete removal of ozone gas. The sensing measurements showed different response times at different gas concentrations, good repeatability, ultrahigh sensitivity and fast recovery time. To the best of our knowledge, this is the first time that a lead halide perovskite semiconductor material is demonstrating its sensing properties in an ozone environment. This work shows the potential of hybrid lead halide based perovskites as reliable sensing elements, serving the objectives of environmental control, with important socioeconomic impact.

Journal ArticleDOI
Xiaofei Zhu1, Ju Yinhui1, Jian Chen1, Liu Deye1, Hong Liu1 
TL;DR: A fully integrated wristband is developed for continuous real-time monitoring of perspiration glucose during physical activities, and uploading the test result to a smartphone app via Bluetooth.
Abstract: We report a nonenzymatic wearable sensor for electrochemical analysis of perspiration glucose. Multipotential steps are applied on a Au electrode, including a high negative pretreatment potential step for proton reduction which produces a localized alkaline condition, a moderate potential step for electrocatalytic oxidation of glucose under the alkaline condition, and a positive potential step to clean and reactivate the electrode surface for the next detection. Fluorocarbon-based materials were coated on the Au electrode for improving the selectivity and robustness of the sensor. A fully integrated wristband is developed for continuous real-time monitoring of perspiration glucose during physical activities, and uploading the test result to a smartphone app via Bluetooth.

Journal ArticleDOI
TL;DR: In this work, nonwoven aramid fibers are coated by EPD onto a backing electrode followed by film formation onto the fibers creating a conductive network, enabling sensing of high pressures without permanent changes to the sensor response, showing high repeatability.
Abstract: A scalable electrophoretic deposition (EPD) approach is used to create novel thin, flexible, and lightweight carbon nanotube-based textile pressure sensors. The pressure sensors can be produced using an extensive variety of natural and synthetic fibers. These piezoresistive sensors are sensitive to pressures ranging from the tactile range (<10 kPa), the body weight range (∼500 kPa), and very high pressures (∼40 MPa). The EPD technique enables the creation of a uniform carbon nanotube-based nanocomposite coating, in the range of 250–750 nm thick, of polyethyleneimine (PEI) functionalized carbon nanotubes on nonconductive fibers. In this work, nonwoven aramid fibers are coated by EPD onto a backing electrode followed by film formation onto the fibers creating a conductive network. The electrically conductive nanocomposite coating is firmly bonded to the fiber surface and shows piezoresistive electrical/mechanical coupling. The pressure sensor displays a large in-plane change in electrical conductivity with ...

Journal ArticleDOI
TL;DR: The route toward an optimal fabrication of nanotube-based sensors for the reliable, energy-efficient sub-ppm ammonia detection is proposed, which matches the pave of advent of future applications.
Abstract: Fabrication and comparative analysis of the gas sensing devices based on individualized single-walled carbon nanotubes of four different types (pristine, boron doped, nitrogen doped, and semiconducting ones) for detection of low concentrations of ammonia is presented. The comparison of the detection performance of different devices, in terms of resistance change under exposure to ammonia at low concentrations combined with the detailed analysis of chemical bonding of dopant atoms to nanotube walls sheds light on the interaction of NH3 with carbon nanotubes. Furthermore, chemoresistive measurements showed that the use of semiconducting nanotubes as conducting channels leads to the highest sensitivity of devices compared to the other materials. Electrical characterization and analysis of the structure of fabricated devices showed a close relation between amount and quality of the distribution of deposited nanotubes and their sensing properties. All measurements were performed at room temperature, and the po...

Journal ArticleDOI
TL;DR: It was discovered that the developed fluorimetric strategy could ensure the high-throughput analysis of Cu2+ ions in wide pH range, and especially some harsh and high-salt media.
Abstract: Silver nanoclusters (AgNCs) were first coated with bovine serum albumin (BSA) and then encapsulated into porous metal–organic frameworks of ZIF-8 by the protein-mediated biomineralization process. Unexpectedly, the fluorescence intensities of the yielded AgNCs-BSA@ZIF-8 nanocomposites were discovered to be continuously enhanced during each of the BSA coating and ZIF-8 encapsulation steps. Compared to common AgNCs, greatly improved photostability and storage stability of AgNCs could also be expected. More importantly, having benefited from the ZIF-8 shells, the prepared nanocomposites could possess the specific accumulation and sensitive response to Cu2+ ions, resulting in the rational quenching of their fluorescence intensities. Moreover, AgNCs-BSA@ZIF-8 nanocomposites were coated onto the hydrophobic arraying slides toward a microdots array-based fluorimetric method for the fast and sensitive evaluation of Cu2+ ions. It was discovered that the developed fluorimetric strategy could ensure the high-through...

Journal ArticleDOI
TL;DR: This review summarizes recent progress of FNA-enabled biosensing in homogeneous solutions, on heterogeneous surfaces, and inside cells, and describes the strategies to translate the structural order and rigidity of FNAs to interfacial engineering with high controllability.
Abstract: Nucleic acids have been actively exploited to develop various exquisite nanostructures due to their unparalleled programmability. Especially, framework nucleic acids (FNAs) with tailorable functionality and precise addressability hold great promise for biomedical applications. In this review, we summarize recent progress of FNA-enabled biosensing in homogeneous solutions, on heterogeneous surfaces, and inside cells. We describe the strategies to translate the structural order and rigidity of FNAs to interfacial engineering with high controllability, and approaches to realize multiplexing for highly parallel in vitro detection. We also envision the marriage of the currently available FNA tool sets with other emerging technologies to develop a new generation of biosensors for precision diagnosis and bioimaging.