scispace - formally typeset
Search or ask a question
JournalISSN: 0323-4320

Acta Hydrochimica Et Hydrobiologica 

Wiley
About: Acta Hydrochimica Et Hydrobiologica is an academic journal. The journal publishes majorly in the area(s): Population & Activated sludge. Over the lifetime, 1740 publications have been published receiving 18248 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors measured arsenic concentrations up to a few milligrams per litre in natural waters and found that in aqueous environment the inorganic arsenic species arsenite (As) and arsenate (As(V)) are the most abundant species.
Abstract: In natural waters arsenic concentrations up to a few milligrams per litre were measured. The natural content of arsenic found in soils varies between 0.01 mg/kg and a few hundred milligrams per kilogram. Anthropogenic sources of arsenic in the environment are the smelting of ores, the burning of coal, and the use of arsenic compounds in many products and production processes in the past. A lot of arsenic compounds are toxic and cause acute and chronic poisoning. In aqueous environment the inorganic arsenic species arsenite (As(III)) and arsenate (As(V)) are the most abundant species. The mobility of these species is influenced by the pH value, the redox potential, and the presence of adsorbents such as oxides and hydroxides of Fe(III), Al(III), Mn(III/IV), humic substances, and clay minerals.

817 citations

Journal ArticleDOI
TL;DR: Arsenic can be removed from waters by coprecipitation with Fe(OH)3, MnO2 or during water softening as mentioned in this paper. But the removal of As(III) is more difficult than removing As(V).
Abstract: In natural waters arsenic normally occurs in the oxidation states +III (arsenite) and +V (arsenate). The removal of As(III) is more difficult than the removal of As(V). Therefore, As(III) has to be oxidized to As(V) prior to its removal. The oxidation in the presence of air or pure oxygen is slow. The oxidation rate can be increased by ozone, chlorine, hypochlorite, chlorine dioxide, or H2O2. The oxidation of As(III) is also possible in the presence of manganese oxide coated sands or by advanced oxidation processes. Arsenic can be removed from waters by coprecipitation with Fe(OH)3, MnO2 or during water softening. Fixed-bed filters have successfully been applied for the removal of arsenic.The effectiveness of arsenic removal was tested in the presence of adsorbents such as FeOOH, activated alumina, ferruginous manganese ore, granular activated carbon, or natural zeolites. Other removal technologies are anion exchange, electrocoagulation, and membrane filtration by ultrafiltration, nanofiltration or reverse osmosis.

532 citations

Journal ArticleDOI
TL;DR: In this article, a series of surface waters, soils, and liquid manures from North Rhine-Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC-MS/MS.
Abstract: In the last years more and more often detections of antimicrobially active compounds (“antibiotics”) in surface waters have been reported. As a possible input pathway in most cases municipal sewage has been discussed. But as an input from the realm of agriculture is conceivable as well, in this study it should be investigated if an input can occur via the pathway application of liquid manure on fields with the subsequent mechanisms surface run-off/interflow, leaching, and drift. For this purpose a series of surface waters, soils, and liquid manures from North Rhine-Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC-MS/MS. In each of the surface waters antibiotics could be detected. The highest concentrations were found in samples from spring (300 ng/L of erythromycin). Some of the substances detected (e.g., tylosin), as well as characteristics in the landscape suggest an input from agriculture in some particular cases. In the investigation of different liquid manure samples by a fast immunoassay method sulfadimidine could be detected in the range of 1…2 mg/kg. Soil that had been fertilized with this liquid manure showed a content of sulfadimidine extractable by accelerated solvent extraction (ASE) of 15 μg/kg dry weight even 7 months after the application. This indicates the high stability of some antibiotics in manure and soil.

509 citations

Journal ArticleDOI
TL;DR: The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe (III) oxides was investigated in this article.
Abstract: The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 μM of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants. Huminstoffe als Vermittler bei der mikrobiell katalysierten Metallreduktion Es wurde untersucht, inwieweit Huminstoffe als terminale Elektronenakzeptoren bei der mikrobiellen Atmung und als Vermittler bei der Elektronenubertragung zwischen Fe(III)-reduzierenden Mikroorganismen und unloslichen Fe(III)-oxiden fungieren konnen. Das Fe(III)-reduzierende Bakterium Geobacter metallireducens gewinnt Energie zum Wachstum aus der Elektronenubertragung auf Huminstoffe. Das wurde offensichtlich, als nach 9 aufeinanderfolgenden Transfers des Bakteriums auf frisches Medium mit Acetat als Elektronendonor und Boden-Huminstoff als Elektronenakzeptor seine Fahigkeit zur Oxidation von Acetat zu CO2 erhalten blieb. Das Wachstum von G. metallireducens mit niedrigkristallinem Fe(III)-oxid als Elektronenakzeptor konnte durch den Zusatz des Huminstoff-Analogen Anthrachinon-2,6-disulfonat bereits in Konzentrationen von 100 μmol/L deutlich stimuliert werden. Auch weitere untersuchte Chinone wie z.B. Lawson (2-Hydroxy-1,4-naphthochinon), Menadion (2-Methyl-1,4-naphthochinon) und Anthrachinon-2-sulfonat stimulierten die Fe(III)-oxid-Reduktion. Eine grose Anzahl phylogenetisch unterschiedlicher Mikroorganismen, die zur Fe(III)-Reduktion befahigt sind, zeigten gleichzeitig die Fahigkeit zum Elektronentransfer auf Huminstoffe. Zur Fe(III)-Reduktion nicht befahigte Mikroorganismen konnten auch Huminstoffe nicht reduzieren. Durch Huminstoffe konnte die Reduktion von Fe(III) stimuliert werden, das in die Struktur von Tonmineralen und in kristalline Formen des Fe(III)-oxids, Goethit und Hamatit, eingebaut ist. Diese Ergebnisse zeigen, das durch die vermittelnde Funktion der Huminstoffe bei der Elektronenubertragung zwischen Fe(III)-reduzierenden Mikroorganismen und Fe(III) nicht nur die mikrobielle Reduktion von niedrigkristallinem Fe(III)-oxid beschleunigt wird, sondern auch die Reduktion von solchen Formen des Fe(III) erleichtert wird, welche im allgemeinen in Abwesenheit von Huminstoffen durch Fe(III)-reduzierende Mikroorganismen nicht reduziert werden. Die Zugabe von Huminstoffen zur Verbesserung der Elektronenubertragung zwischen Fe(III)-reduzierenden Mikroorganismen und Fe(III)-oxiden konnte eine nutzliche Strategie zur Stimulierung der Sanierung von mit organischen oder metallischen Kontaminanten verunreinigten Boden und Sedimenten sein.

478 citations

Network Information
Related Journals (5)
Water Research
23.8K papers, 1.6M citations
79% related
Hydrobiologia
20.4K papers, 638.7K citations
77% related
Chemosphere
41.8K papers, 1.6M citations
76% related
Ecotoxicology and Environmental Safety
13.9K papers, 442.8K citations
76% related
Water Science and Technology
24K papers, 557.7K citations
76% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20181
200664
200560
200435
200342
200225