scispace - formally typeset
Search or ask a question
JournalISSN: 0567-7718

Acta Mechanica Sinica 

Springer Science+Business Media
About: Acta Mechanica Sinica is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Finite element method & Turbulence. It has an ISSN identifier of 0567-7718. Over the lifetime, 3214 publications have been published receiving 31898 citations. The journal is also known as: Lixue xuebao.


Papers
More filters
Journal ArticleDOI
TL;DR: Applications of the topology optimization method to the design of macro structures for minimum compliance and micro compliant mechanisms show that the method provides manufacturing tolerant designs with little decrease in performance.
Abstract: In this paper we present an extension of the topology optimization method to include uncertainties during the fabrication of macro, micro and nano structures. More specifically, we consider devices that are manufactured using processes which may result in (uniformly) too thin (eroded) or too thick (dilated) structures compared to the intended topology. Examples are MEMS devices manufactured using etching processes, nano-devices manufactured using e-beam lithography or laser micro-machining and macro structures manufactured using milling processes. In the suggested robust topology optimization approach, under- and over-etching is modelled by image processing-based “erode” and “dilate” operators and the optimization problem is formulated as a worst case design problem. Applications of the method to the design of macro structures for minimum compliance and micro compliant mechanisms show that the method provides manufacturing tolerant designs with little decrease in performance. As a positive side effect the robust design formulation also eliminates the longstanding problem of one-node connected hinges in compliant mechanism design using topology optimization.

364 citations

Journal ArticleDOI
TL;DR: In this article, the equations of motion of an insect with flapping wings were derived and then simplified to that of a flying body using the "rigid body" assumption, and the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight was studied.
Abstract: The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the “rigid body” assumption. On the basis of the simplified equations of motion, the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight is studied (the mass of the insects ranging from 11 to 1,648 mg and wingbeat frequency from 26 to 157 Hz). The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are used to solve the equations of motion. The validity of the “rigid body” assumption is tested and how differences in size and wing kinematics influence the applicability of the “rigid body” assumption is investigated. The primary findings are: (1) For insects considered in the present study and those with relatively high wingbeat frequency (hoverfly, drone fly and bumblebee), the “rigid body” assumption is reasonable, and for those with relatively low wingbeat frequency (cranefly and howkmoth), the applicability of the “rigid body” assumption is questionable. (2) The same three natural modes of motion as those reported recently for a bumblebee are identified, i.e., one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. (3) Approximate analytical expressions of the eigenvalues, which give physical insight into the genesis of the natural modes of motion, are derived. The expressions identify the speed derivative Mu (pitching moment produced by unit horizontal speed) as the primary source of the unstable oscillatory mode and the stable fast subsidence mode and Zw (vertical force produced by unit vertical speed) as the primary source of the stable slow subsidence mode.

201 citations

Journal ArticleDOI
TL;DR: In this article, the free vibration of magnetoelectro-elastic (MEE) nanoplates is investigated based on the nonlocal theory and Kirchhoff plate theory.
Abstract: In this paper, the free vibration of magnetoelectro-elastic (MEE) nanoplates is investigated based on the nonlocal theory and Kirchhoff plate theory. The MEE nanoplate is assumed as all edges simply supported rectangular plate subjected to the biaxial force, external electric potential, external magnetic potential, and temperature rise. By using the Hamilton's principle, the governing equations and boundary conditions are derived and then solved analytically to obtain the natural frequencies of MEE nanoplates. A parametric study is presented to examine the effect of the nonlocal parameter, thermo-magneto-electro-mechanical loadings and aspect ratio on the vibration characteristics of MEE nanoplates. It is found that the natural frequency is quite sensitive to the mechanical loading, electric loading and magnetic loading, while it is insensitive to the thermal loading.

195 citations

Journal ArticleDOI
TL;DR: In this article, a constitutive relation for single-walled carbon nanotubes (SWCNTs) is established to describe the nonlinear stress-strain curve of SWCNT's and to predict both the elastic properties and breaking strain of CNT's during tensile deformation.
Abstract: In this paper, by capturing the atomic informa- tion and reflecting the behaviour governed by the nonlin- ear potential function, an analytical molecular mechanics approach is proposed. A constitutive relation for single- walled carbon nanotubes (SWCNT's) is established to describe the nonlinear stress-strain curve of SWCNT's and to predict both the elastic properties and breaking strain of SWCNT's during tensile deformation. An analysis based on the virtual internal bond (VIB) model proposed by P. Zhang et al. is also presented for comparison. The results indicate that the proposed molecular mechanics approach is indeed an acceptable analytical method for analyzing the mechanical behavior of SWCNT's. of CNT's. The Young's modulus of CNT's was found to be about 1 TPa (2-5). Many theories of mechanics have also been proposed to study the mechanical properties of CNT's. Zhang et al. (6) developed a continuum mechanics approach to model elastic properties of single-walled carbon nanotubes (SWCNT's), and the Young's modulus of SWCNT's was pre- dicted to be 0.705 TPa. Li and Chou (7) presented a structural mechanics approach to model the deformation of CNT's, and calculated the Young's moduli for CNT's with different radii. A similar approach was presented by Chang and Gao (8), and the chirality- and size-dependent elastic properties such as Young's modulus, Poisson's ratio and shear modulus were predicted (9,10). Moreover, the nonlinear effect of SWCNT's was taken into account (11) recently. In view of the unrealistic demand of computational power to study materials of practical size, atomistic simulations are deemed unsuitable for the study of large scaled nanometer materials in large time spans. Therefore, various attempts have been made by researchers to introduce atomic character- istics into the mechanical theory. For example, the molecular mechanics originally developed by chemical scientists (12) can be considered one of the successful attempts. According to the definition of Burkert and Allinger (12), the total potential energy, U , is constitutive of several individual energy terms corresponding to bond stretching, angle bend- ing, torsion, and van der Waals interactions, respectively: U = � Ustretch + � Ubend

193 citations

Journal ArticleDOI
TL;DR: In this paper, a micropolar model for axisymmetric blood flow through an axially nonsymmetreic but radially symmetric mild stenosis tapered artery is presented.
Abstract: A micropolar model for axisymmetric blood flow through an axially nonsymmetreic but radially symmetric mild stenosis tapered artery is presented. To estimate the effect of the stenosis shape, a suitable geometry has been considered such that the axial shape of the stenosis can be changed easily just by varying a parameter (referred to as the shape parameter). The model is also used to study the effect of the taper angle $${\phi}$$ . Flow parameters such as the velocity, the resistance to flow (the resistance impedance), the wall shear stress distribution in the stenotic region and its magnitude at the maximum height of the stenosis (stenosis throat) have been computed for different values of the shape parameter n, the taper angle $${\phi}$$ , the coupling number N and the micropolar parameter m. It is shown that the resistance to flow decreases with increasing the shape parameter n and the micropolar parameter m while it increases with increasing the coupling number N. So, the magnitude of the resistance impedance is higher for a micropolar fluid than that for a Newtonian fluid model. Finally, the velocity profile, the wall shear stress distribution in the stenotic region and its magnitude at the maximum height of the stenosis are discussed for different values of the parameters involved on the problem.

161 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023131
2022261
2021127
2020109
2019104
201898