scispace - formally typeset
Search or ask a question

Showing papers in "Acta Neuropathologica in 2007"


Journal ArticleDOI
TL;DR: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneurs tumour of the fourth ventricle, Papillary tumourof the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis.
Abstract: The fourth edition of the World Health Organization (WHO) classification of tumours of the central nervous system, published in 2007, lists several new entities, including angiocentric glioma, papillary glioneuronal tumour, rosette-forming glioneuronal tumour of the fourth ventricle, papillary tumour of the pineal region, pituicytoma and spindle cell oncocytoma of the adenohypophysis. Histological variants were added if there was evidence of a different age distribution, location, genetic profile or clinical behaviour; these included pilomyxoid astrocytoma, anaplastic medulloblastoma and medulloblastoma with extensive nodularity. The WHO grading scheme and the sections on genetic profiles were updated and the rhabdoid tumour predisposition syndrome was added to the list of familial tumour syndromes typically involving the nervous system. As in the previous, 2000 edition of the WHO ‘Blue Book’, the classification is accompanied by a concise commentary on clinico-pathological characteristics of each tumour type. The 2007 WHO classification is based on the consensus of an international Working Group of 25 pathologists and geneticists, as well as contributions from more than 70 international experts overall, and is presented as the standard for the definition of brain tumours to the clinical oncology and cancer research communities world-wide.

13,134 citations


Journal ArticleDOI
TL;DR: The aim of this study was to improve the neuropathologic recognition and provide criteria for the pathological diagnosis in the neurodegenerative diseases grouped as frontotemporal lobar degeneration (FTLD) and incorporate up-to-date neuropathology in the light of recent immunohistochemical, biochemical, and genetic advances.
Abstract: The aim of this study was to improve the neuropathologic recognition and provide criteria for the pathological diagnosis in the neurodegenerative diseases grouped as frontotemporal lobar degeneration (FTLD); revised criteria are proposed. Recent advances in molecular genetics, biochemistry, and neuropathology of FTLD prompted the Midwest Consortium for Frontotemporal Lobar Degeneration and experts at other centers to review and revise the existing neuropathologic diagnostic criteria for FTLD. The proposed criteria for FTLD are based on existing criteria, which include the tauopathies [FTLD with Pick bodies, corticobasal degeneration, progressive supranuclear palsy, sporadic multiple system tauopathy with dementia, argyrophilic grain disease, neurofibrillary tangle dementia, and FTD with microtubule-associated tau (MAPT) gene mutation, also called FTD with parkinsonism linked to chromosome 17 (FTDP-17)]. The proposed criteria take into account new disease entities and include the novel molecular pathology, TDP-43 proteinopathy, now recognized to be the most frequent histological finding in FTLD. TDP-43 is a major component of the pathologic inclusions of most sporadic and familial cases of FTLD with ubiquitin-positive, tau-negative inclusions (FTLD-U) with or without motor neuron disease (MND). Molecular genetic studies of familial cases of FTLD-U have shown that mutations in the progranulin (PGRN) gene are a major genetic cause of FTLD-U. Mutations in valosin-containing protein (VCP) gene are present in rare familial forms of FTD, and some families with FTD and/or MND have been linked to chromosome 9p, and both are types of FTLD-U. Thus, familial TDP-43 proteinopathy is associated with defects in multiple genes, and molecular genetics is required in these cases to correctly identify the causative gene defect. In addition to genetic heterogeneity amongst the TDP-43 proteinopathies, there is also neuropathologic heterogeneity and there is a close relationship between genotype and FTLD-U subtype. In addition to these recent significant advances in the neuropathology of FTLD-U, novel FTLD entities have been further characterized, including neuronal intermediate filament inclusion disease. The proposed criteria incorporate up-to-date neuropathology of FTLD in the light of recent immunohistochemical, biochemical, and genetic advances. These criteria will be of value to the practicing neuropathologist and provide a foundation for clinical, clinico-pathologic, mechanistic studies and in vivo models of pathogenesis of FTLD.

1,000 citations



Journal ArticleDOI
TL;DR: In contrast to almost all other brain tumors, diffuse gliomas infiltrate extensively in the neuropil, and this growth pattern is a major factor in therapeutic failure, so a more targeted (“search & destroy”) tactic may be needed for these tumors.
Abstract: In contrast to almost all other brain tumors, diffuse gliomas infiltrate extensively in the neuropil. This growth pattern is a major factor in therapeutic failure. Diffuse infiltrative glioma cells show some similarities with guerilla warriors. Histopathologically, the tumor cells tend to invade individually or in small groups in between the dense network of neuronal and glial cell processes. Meanwhile, in large areas of diffuse gliomas the tumor cells abuse pre-existent "supply lines" for oxygen and nutrients rather than constructing their own. Radiological visualization of the invasive front of diffuse gliomas is difficult. Although the knowledge about migration of (tumor)cells is rapidly increasing, the exact molecular mechanisms underlying infiltration of glioma cells in the neuropil have not yet been elucidated. As the efficacy of conventional methods to fight diffuse infiltrative glioma cells is limited, a more targeted ("search & destroy") tactic may be needed for these tumors. Hopefully, the study of original human glioma tissue and of genotypically and phenotypically relevant glioma models will soon provide information about the Achilles heel of diffuse infiltrative glioma cells that can be used for more effective therapeutic strategies.

533 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated if TAR-DNA-binding protein-43 (TDP-43), the disease protein in frontotemporal lobar degeneration and ubiquitin inclusions with or without motor neuron disease as well as amyotrophic lateral sclerosis, also formed inclusions in Lewy body (LB) disorders including Parkinson's disease (PD) without or with dementia (PDD), and dementia with LBs (DLB) alone or in association with Alzheimer disease (AD).
Abstract: Here, we investigated if TAR-DNA-binding protein-43 (TDP-43), the disease protein in frontotemporal lobar degeneration and ubiquitin inclusions with or without motor neuron disease as well as amyotrophic lateral sclerosis, also formed inclusions in Lewy body (LB) disorders including Parkinson’s disease (PD) without or with dementia (PDD), and dementia with LBs (DLB) alone or in association with Alzheimer’s disease (AD) Immunohistochemical analyses of TDP-43 in clinically well characterized and pathologically confirmed cases of DLB + AD, PD and PDD demonstrated TDP-43 pathology in the following percentage of cases: DLB + AD = 25/80 (313%); PD = 5/69 (72%); PDD = 4/21 (19%), while DLB and normal controls exhibited no (0/10, 0%) and one cases (1/33, 3%) presenting TDP-43 pathology, respectively Significant differences in the prevalence of TDP-43 lesions were noted between disease versus normal brains (P < 0001) as well as demented versus non-demented brains (P < 0001) Statistical analyses revealed a positive relationship between TDP-43 lesions and several clinical and pathological parameters in these disorders suggesting the TDP-43 pathology may have co-morbid effects in LB diseases This study expands the concept of TDP-43 proteinopathies by implicating TDP-43 lesions in mechanisms of neurodegeneration in LB disorders

399 citations


Journal ArticleDOI
TL;DR: The presence of immunoreactive astrocytes is reported in 14 autopsy cases with clinically diagnosed PD and a neuropathological stage of 4 or higher, and it is suggested that the most likely cause of theastrocytic reaction may be a slightly altered α-synuclein molecule that escapes from terminal axons of affected cortICO-striatal or cortico-thalamic neurons and is taken up by astroCytes.
Abstract: Astrocytic α-synuclein-immunoreactive inclusions have recently been noted to develop in sporadic Parkinson’s disease (PD). Here, the presence of immunoreactive astrocytes is reported in 14 autopsy cases with clinically diagnosed PD and a neuropathological stage of 4 or higher. The labeled astrocytes occur preferentially in prosencephalic regions (amygdala, thalamus, septum, striatum, claustrum, and cerebral cortex). They appear first in layers V–VI of the temporal mesocortex, then in the striatum and in thalamic nuclei that project to the cortex. The topographical distribution pattern of these astrocytes closely parallels that of the cortical intraneuronal Lewy neurites and Lewy bodies, which, from their foothold in the mesocortex, gradually encroach upon neocortical association areas and even the primary fields. Thus, labeling of astrocytes appears to accompany the formation of neuronal inclusion bodies. Relatively small immunoreactive cortical pyramidal neurons in layers V–VI probably project to nearby destinations, such as the striatum and thalamus. Inasmuch as the projection neurons of both the striatum and the dorsal thalamus do not develop Lewy bodies, it is suggested that the most likely cause of the astrocytic reaction may be a slightly altered α-synuclein molecule that escapes from terminal axons of affected cortico-striatal or cortico-thalamic neurons and is taken up by astrocytes. Other aggregated proteins known to co-occur with PD-associated intraneuronal lesions, e.g., Aβ protein or neurofibrillary changes of the Alzheimer type, do not appear to influence the development of the α-synuclein immunoreactive astrocytes.

328 citations


Journal ArticleDOI
TL;DR: In this article, a histopathological classification system for hippocampal cell loss in patients suffering from mesial temporal lobe epilepsies (MTLE) was proposed, which is suitable for stratifying the clinically heterogeneous group of MTLE patients also with respect to postsurgical outcome studies.
Abstract: We propose a histopathological classification system for hippocampal cell loss in patients suffering from mesial temporal lobe epilepsies (MTLE). One hundred and seventy-eight surgically resected specimens were microscopically examined with respect to neuronal cell loss in hippocampal subfields CA1–CA4 and dentate gyrus. Five distinct patterns were recognized within a consecutive cohort of anatomically well-preserved surgical specimens. The first group comprised hippocampi with neuronal cell densities not significantly different from age matched autopsy controls [no mesial temporal sclerosis (no MTS); n = 34, 19%]. A classical pattern with severe cell loss in CA1 and moderate neuronal loss in all other subfields excluding CA2 was observed in 33 cases (19%), whereas the vast majority of cases showed extensive neuronal cell loss in all hippocampal subfields (n = 94, 53%). Due to considerable similarities of neuronal cell loss patterns and clinical histories, we designated these two groups as MTS type 1a and 1b, respectively. We further distinguished two atypical variants characterized either by severe neuronal loss restricted to sector CA1 (MTS type 2; n = 10, 6%) or to the hilar region (MTS type 3, n = 7, 4%). Correlation with clinical data pointed to an early age of initial precipitating injury (IPI < 3 years) as important predictor of hippocampal pathology, i.e. MTS type 1a and 1b. In MTS type 2, IPIs were documented at a later age (mean 6 years), whereas in MTS type 3 and normal appearing hippocampus (no MTS) the first event appeared beyond the age of 13 and 16 years, respectively. In addition, postsurgical outcome was significantly worse in atypical MTS, especially MTS type 3 with only 28% of patients having seizure relief after 1-year follow-up period, compared to successful seizure control in MTS types 1a and 1b (72 and 73%). Our classification system appears suitable for stratifying the clinically heterogeneous group of MTLE patients also with respect to postsurgical outcome studies.

325 citations


Journal ArticleDOI
TL;DR: The findings indicate that the histological and molecular pathology of SALS can occur as a phenotype of FALS without SOD1 mutation.
Abstract: Recently, 43-kDa TAR DNA-binding protein (TDP-43) was identified as a component of ubiquitinated inclusions (UIs) in sporadic amyotrophic lateral sclerosis (SALS). To clarify whether TDP-43 immunoreactivity is present in neuronal inclusions in familial ALS (FALS), we examined immunohistochemically the brains and spinal cords from four cases of FALS, two with Cu/Zn superoxide dismutase (SOD1) gene mutation and two without, together with three cases of SALS and three control subjects, using two antibodies, one polyclonal and one monoclonal, against TDP-43. Neuropathologically, the SOD1-related FALS cases were characterized by Lewy body-like hyaline inclusions (LBHIs) in the lower motor neurons. On the other hand, the SOD1-unrelated FALS cases showed degeneration restricted to the upper and lower motor neuron systems, with Bunina bodies (BBs) and UIs in the lower motor neurons, being indistinguishable from SALS. No cytoplasmic TDP-43 immunoreactivity was observed in the control subjects or SOD1-related FALS cases; LBHIs were ubiquitinated, but negative for TDP-43. UIs observed in the SALS and SOD1-unrelated FALS cases were clearly positive for TDP-43. BBs were negative for this protein. Interestingly, in these SALS and FALS cases, glial cells were also found to have cytoplasmic TDP-43-positive inclusions. These findings indicate that the histological and molecular pathology of SALS can occur as a phenotype of FALS without SOD1 mutation.

302 citations


Journal ArticleDOI
TL;DR: Gray matter lesions occur in a third or more of PVL cases suggesting that white matter injury generally does not occur in isolation, and that the term “perinatal panencephalopathy” may better describe the scope of the neuropathology.
Abstract: Neuroimaging studies indicate reduced volumes of certain gray matter regions in survivors of prematurity with periventricular leukomalacia (PVL). We hypothesized that subacute and/or chronic gray matter lesions are increased in incidence and severity in PVL cases compared to non-PVL cases at autopsy. Forty-one cases of premature infants were divided based on cerebral white matter histol- ogy: PVL (n = 17) with cerebral white matter gliosis and focal periventricular necrosis; diVuse white matter gliosis (DWMG) (n = 17) without necrosis; and " Negative" group (n = 7) with no abnormalities. Neuronal loss was found almost exclusively in PVL, with signiW- cantly increased incidence and severity in the thalamus (38%), globus pallidus (33%), and cerebellar dentate nucleus (29%) compared to DWMG cases. The incidence of gliosis was signiWcantly increased in PVL compared to DWMG cases in the deep gray nuclei (thalamus/basal ganglia; 50-60% of PVL cases), and basis pontis (100% of PVL cases). Thalamic and basal ganglionic lesions occur almost exclusively in infants with PVL. Gray matter lesions occur in a third or more of PVL cases suggesting that white matter injury generally does not occur in isolation, and that the term "perinatal panencephalopathy" may better describe the scope of the neuropathology.

290 citations


Journal ArticleDOI
TL;DR: Investigation of the first relay stations of the pain system as well as parasympathetic and sympathetic pre- and postganglionic nerve cells in the lower brainstem, spinal cord, and coeliac ganglion indicates that physical contacts between vulnerable regions play a key role in the pathogenesis of PD.
Abstract: Clinical signs frequently recognized in early phases of sporadic Parkinson’s disease (PD) may include autonomic dysfunctions and the experience of pain. Early disease-related lesions that may account for these symptoms are presently unknown or incompletely known. In this study, immunocytochemistry for α-synuclein was used to investigate the first relay stations of the pain system as well as parasympathetic and sympathetic pre- and postganglionic nerve cells in the lower brainstem, spinal cord, and coeliac ganglion in 100 μm polyethylene glycol embedded sections from six autopsy individuals, whose brains were staged for PD-associated synucleinopathy. Immunoreactive inclusions were found for the first time in spinal cord lamina I neurons. Lower portions of the spinal cord downwards of the fourth thoracic segment appeared to be predominantly affected, whereas the spinal trigeminal nucleus was virtually intact. Additional involvement was seen in parasympathetic preganglionic projection neurons of the vagal nerve, in sympathetic preganglionic neurons of the spinal cord, and in postganglionic neurons of the coeliac ganglion. The known interconnectivities between all of these components offer a possible explanation for their particular vulnerability. Lamina I neurons (pain system) directly project upon sympathetic relay centers, and these, in turn, exert influence on the parasympathetic regulation of the enteric nervous system. This constellation indicates that physical contacts between vulnerable regions play a key role in the pathogenesis of PD.

290 citations


Journal ArticleDOI
TL;DR: It is concluded that the UBQ-ir lesions of FTLD and MND are defined by the presence of TDP-43, and that these disorders can be subsumed into a single disease entity under the umbrella of T DP-43 proteinopathy.
Abstract: We have investigated the extent and pattern of immunostaining for the TAR DNA-binding protein, TDP-43, in 37 patients with frontotemporal lobar degeneration with ubiquitin (UBQ) pathology (FTLD-U). We confirm that TDP-43 protein is a component of the UBQ immunoreactive (UBQ-ir) neuronal cytoplasmic inclusions (NCI), neuronal intranuclear inclusions (NII) and neurites of the cerebral cortex and hippocampus in FTLD-U. We further show that the same three histological patterns, previously identified by us according to the form, number and distribution of the UBQ-ir NCI, NII and neurites are equivalently present in TDP-43 immunohistochemistry. TDP-43 immunoreactive (TDP-43-ir) NCI with rounded, spicular or skein-type appearance were seen in motor neurones of the trigeminal or facial cranial nerve nuclei in one patient with frontotemporal dementia (FTD) and in the spinal cord in three patients with FTD + motor neurone disease (MND). In patients with MND alone, TDP-43-ir NCI are common in anterior horn cells of the spinal cord, and occasionally seen in neurones of the hypoglossus nucleus. We show that TDP-43-ir NCI are also present within neurones in the superior and inferior olives in FTLD-U, and in some patients with MND. Although TDP-43 is normally seen as a nuclear protein, nuclear TDP-ir was not observed in neurones of the cerebral cortex, brainstem and spinal cord in FTLD-U or MND when NCI were present. We conclude that the UBQ-ir lesions of FTLD and MND are defined by the presence of TDP-43, and that these disorders can be subsumed into a single disease entity under the umbrella of TDP-43 proteinopathy.

Journal ArticleDOI
TL;DR: The findings demonstrate predictable relationships between clinical phenotype and both topographical distribution of brain atrophy and immunohistochemical characteristics and emphasise the importance of refined delineation of both clinical and pathological phenotype in furthering understanding of FTLD and its molecular substrate.
Abstract: Frontotemporal lobar degeneration (FTLD) encompasses a heterogeneous group of clinical syndromes that include frontotemporal dementia (FTD), frontotemporal dementia with motor neurone disease (FTD/MND), progressive non-fluent aphasia (PNFA), semantic dementia (SD) and progressive apraxia (PAX). Clinical phenotype is often assumed to be a poor predictor of underlying histopathology. Advances in immunohistochemistry provide the opportunity to re-examine this assumption. We classified pathological material from 79 FTLD brains, blind to clinical diagnosis, according to topography of brain atrophy and immunohistochemical characteristics. There were highly significant relationships to clinical syndrome. Atrophy was predominantly frontal and anterior temporal in FTD, frontal in FTD/MND, markedly asymmetric perisylvian in PNFA, asymmetric bitemporal in SD and premotor, parietal in PAX. Tau pathology was found in half of FTD and all PAX cases but in no FTD/MND or SD cases and only rarely in PNFA. FTD/MND, SD and PNFA cases were ubiquitin and TDP-43 positive. SD cases were associated with dystrophic neurites without neuronal cytoplasmic or intranuclear inclusions (FTLD-U, type 1), FTD/MND with numerous neuronal cytoplasmic inclusions (FTLD-U, type 2 ) and PNFA with neuronal cytoplasmic inclusions, dystrophic neurites and neuronal intranuclear inclusions (FTLD-U, type 3). MAPT mutations were linked to FTD and PGRN mutations to FTD and PNFA. The findings demonstrate predictable relationships between clinical phenotype and both topographical distribution of brain atrophy and immunohistochemical characteristics. The findings emphasise the importance of refined delineation of both clinical and pathological phenotype in furthering understanding of FTLD and its molecular substrate.

Journal ArticleDOI
TL;DR: The results indicate that GAD67 mRNA level was reduced by 40% in the autistic group, suggesting that reduced Purkinje cell GABA input to the cerebellar nuclei potentially disrupts Cerebellar output to higher association cortices affecting motor and/or cognitive function.
Abstract: The recent identification of decreased protein levels of glutamate decarboxylase (GAD) 65 and 67 isoforms in the autistic cerebellar tissue raises the possibility that abnormal regulation of GABA production in individual neurons may contribute to the clinical features of autism. Reductions in Purkinje cell number have been widely reported in autism. It is not known whether the GAD changes also occur in Purkinje cells at the level of transcription. Using a novel approach, the present study quantified GAD67 mRNA, the most abundant isoform in Purkinje cells, using in situ hybridization in adult autistic and control cases. The results indicate that GAD67 mRNA level was reduced by 40% in the autistic group (P < 0.0001; two-tailed t test), suggesting that reduced Purkinje cell GABA input to the cerebellar nuclei potentially disrupts cerebellar output to higher association cortices affecting motor and/or cognitive function. These findings may also contribute to the understanding of previous reports of alterations in the GABAergic system in limbic and cerebro-cortical areas contributing to a more widespread pathophysiology in autistic brains.

Journal ArticleDOI
TL;DR: No validated neuropathologic criteria for VaD are available, and a large variability across laboratories still exists in the procedures for morphologic examination and histology techniques, suggesting different pathogenesis of both types of lesions.
Abstract: The prevalence, morphology and pathogenesis of vascular dementia (VaD), recently termed vascular cognitive impairment, are a matter of discussion, and currently used clinical diagnostic criteria show moderate sensitivity (average 50%) and variable specificity (range 64–98%). In Western clinic-based series, VaD is suggested in 8–10% of cognitively impaired aged subjects. Its prevalence in autopsy series varies from 0.03 to 58%, with reasonable values of 8–15%, while in Japan it is seen in 22–35%. Neuropathologic changes associated with cognitive impairment include multifocal and/or diffuse disease and focal lesions: multi-infarct encephalopathy, white matter lesions or arteriosclerotic subcortical (leuko)encephalopathy, multilacunar state, mixed cortico-subcortical type, borderline/watershed lesions, rare granular cortical atrophy, post-ischemic encephalopathy and hippocampal sclerosis. They result from systemic, cardiac and local large or small vessel disease. Recent data indicate that cognitive decline is commonly associated with widespread small ischemic/vascular lesions (microinfarcts, lacunes) throughout the brain with predominant involvement of subcortical and functionally important brain areas. Their pathogenesis is multifactorial, and their pathophysiology affects neuronal networks involved in cognition, memory, behavior and executive functioning. Vascular lesions often coexist with Alzheimer disease (AD) and other pathologies. Minor cerebrovascular lesions, except for severe amyloid angiopathy, appear not essential for cognitive decline in full-blown AD, while both mild Alzheimer pathology and small vessel disease may interact synergistically. The lesion pattern of “pure” VaD, related to arteriosclerosis and microangiopathies, differs from that in mixed-type dementia (AD with vascular encephalopathy), more often showing large infarcts, which suggests different pathogenesis of both types of lesions. Due to the high variability of cerebrovascular pathology and its causative factors, no validated neuropathologic criteria for VaD are available, and a large variability across laboratories still exists in the procedures for morphologic examination and histology techniques.

Journal ArticleDOI
TL;DR: This review summarizes the growing evidence that TDP-43 proteinopathy is the common pathologic substrate linking FTLD and ALS, and it considers the implications for developing better strategies to diagnose and treat these neurodegenerative disorders.
Abstract: The rapid confirmation of the initial report by Neumann et al. (Science 314:130–133, 2006) that transactive response (TAR)-DNA-binding protein 43 (TDP-43) is the major disease protein linking frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) with and without motor neuron disease (MND) as well as amyotrophic lateral sclerosis (ALS) implies that TDP-43 proteinopathy underlies major forms of sporadic as well as familial FTLD and ALS. Not only was the identity of the ubiquitinated proteins that accumulate in neurons and glia of these disorders finally resolved, but it also was shown that pathologic TDP-43 was hyperphosphorylated, ubiquitinated and cleaved to generate C-terminal fragments in affected brain and spinal cord of FTLD-U and ALS. This review summarizes the growing evidence that TDP-43 proteinopathy is the common pathologic substrate linking FTLD and ALS, and it considers the implications of these findings for developing better strategies to diagnose and treat these neurodegenerative disorders.

Journal ArticleDOI
TL;DR: Caveolae and caveolin-1 have an important role in early BBB breakdown and could be potential therapeutic targets in the control of early brain edema.
Abstract: The significance of caveolin-1, a major constituent of caveolae, and the tight junction proteins occludin and claudin-5 in early blood–brain barrier (BBB) breakdown was assessed by sequential demonstration of the expression of these proteins over a period of 12 h to 6 days post-lesion in the rat cortical cold injury model. Pial and intracerebral vessels of control rats showed punctuate endothelial immunoreactivity for caveolin-1 and caveolin-2, while claudin-5 and occludin were localized as longitudinal strands in endothelium. During the early phase of BBB breakdown following injury at 12 h and on day 2, western blot analyses detected a significant increase in caveolin-1 expression at the lesion site while immunohistochemistry showed that the caveolin-1 increase was localized to the endothelium of lesion vessels. Decreased expression of occludin occurred at the lesion site only on days 2 and 4 post-lesion while claudin-5 expression was decreased only on day 2. Dual labeling for fibronectin, a marker of BBB breakdown, and caveolin-1 or the tight junction proteins demonstrated that only lesion vessels with BBB breakdown showed a marked increase of caveolin-1, loss of occludin and reduced localization of claudin-5. The issue whether these alterations precede or follow BBB breakdown is uncertain; however, increased expression of caveolin-1 preceded the decreased expression of occludin and claudin-5. Thus caveolae and caveolin-1 have an important role in early BBB breakdown and could be potential therapeutic targets in the control of early brain edema.

Journal ArticleDOI
TL;DR: Although not perfect, these models are essential for modeling the human disease in cells, which is not feasible with postmortem human HD brains, Nonetheless, their relevance to the patient population remains to be determined.
Abstract: Huntington disease (HD) occurs only in humans. Thus, its natural pathogenesis takes place exclusively within the human brains expressing the causative, mutated protein huntingtin (mhtt). The techniques applicable to postmortem human HD brains are inadequate for investigating the cellular pathogenesis. The creation of genetically engineered animals represents a critical moment in neuroscience. Monitoring the actions of either normal, or abnormal proteins at subcellular levels, and at different time points is now possible thanks to these models. They are the necessary substitutes to investigate the wild type (whtt), or mhtt. The postmortem neuropathologic phenotype of the human HD is well documented. Its pattern and spectrum are highly predictable. From this point of view, the existent models do not exhibit the phenotypic constellation of changes seen in the human HD brains. On one hand, this deficit reflects the limitations of the methods of evaluation used in a clinical setting. On the other hand, it highlights the limitations of the animals. The validity of the models probably should be measured by their capacity of reproducing the cellular dysfunctions of HD rather than the phenotype of the postmortem human brains. Although not perfect, these models are essential for modeling the human disease in cells, which is not feasible with postmortem human HD brains. Nonetheless, their relevance to the patient population remains to be determined. Ultimately needed are means preventing the disease to occur, the discovery of which probably depends on these models.

Journal ArticleDOI
TL;DR: The results indicate that G-PDC and G-ALS are associated with pathological TDP-43 similar to FTLD-U with/without MND as well as ALS, and that neocortical or hippocampal T DP-43 pathology distinguishes controls from disease subjects better than tau pathology.
Abstract: Pathological TDP-43 is the major disease protein in frontotemporal lobar degeneration characterized by ubiquitin inclusions (FTLD-U) with/without motor neuron disease (MND) and in amyotrophic lateral sclerosis (ALS). As Guamanian parkinsonism-dementia complex (PDC) or Guamanian ALS (G-PDC or G-ALS) of the Chamorro population may present clinically similar to FTLD-U and ALS, TDP-43 pathology may be present in the G-PDC and G-ALS. Thus, we examined cortical or spinal cord samples from 54 Guamanian subjects for evidence of TDP-43 pathology. In addition to cortical neurofibrillary and glial tau pathology, G-PDC was associated with cortical TDP-43 positive dystrophic neurites and neuronal and glial inclusions in gray and/or white matter. Biochemical analyses showed the presence of FTLD-U-like insoluble TDP-43 in G-PDC, but not in Guam controls (G-C). Spinal cord pathology of G-PDC or G-ALS was characterized by tau positive tangles as well as TDP-43 positive inclusions in lower motor neurons and glial cells. G-C had variable tau and negligible TDP-43 pathology. These results indicate that G-PDC and G-ALS are associated with pathological TDP-43 similar to FTLD-U with/without MND as well as ALS, and that neocortical or hippocampal TDP-43 pathology distinguishes controls from disease subjects better than tau pathology. Finally, we conclude that the spectrum of TDP-43 proteinopathies should be expanded to include neurodegenerative cognitive and motor diseases, affecting the Chamorro population of Guam.

Journal ArticleDOI
TL;DR: This study provides direct mechanistic insights into the molecular basis of both axonal and dendritic neurodegeneration seen in Alzheimer disease by following the effects of hyperphosphorylated tau on microtubule dynamics in real time.
Abstract: Hyperphosphorylated tau has long been proposed as the key molecule disrupting normal neuronal microtubule dynamics and leading to neurofibrillary degeneration in Alzheimer disease. Here we provide a direct evidence of hyperphosphorylated tau-induced disruption of microtubule network. Using Nocodozole-treated and detergent-extracted cells, we created a neuronal environment in mouse embryonic fibroblasts, 3T3 cells, by replacing their cytoplasm with adult rat brain cytosol. By recreating neuronal microtubule network in these cells, we were able to follow the effects of hyperphosphorylated tau on microtubule dynamics in real time. Whereas recombinant human brain tau promoted assembly and bundling of microtubules, abnormally hyperphosphorylated tau isolated from Alzheimer disease brain cytosol (AD P-tau) inhibited the assembly and disrupted preformed microtubule network by sequestering normal brain tau and MAP2. This breakdown of the microtubule network was reversed by treatment of the extracted cells with protein phosphatase-2A. This study, for the first time, provides direct mechanistic insights into the molecular basis of both axonal and dendritic neurodegeneration seen in Alzheimer disease.

Journal ArticleDOI
TL;DR: Four major silver-staining methods are outlined with respect to their principles, basic protocols and interpretations, thereby providing neuropathologists, technicians and neuroscientists with a common basis for comparing findings and identifying the issues that still need to be clarified.
Abstract: Silver-staining methods are helpful for histological identification of pathological deposits. In spite of some ambiguities regarding their mechanism and interpretation, they are widely used for histopathological diagnosis. In this review, four major silver-staining methods, modified Bielschowsky, Bodian, Gallyas (GAL) and Campbell–Switzer (CS) methods, are outlined with respect to their principles, basic protocols and interpretations, thereby providing neuropathologists, technicians and neuroscientists with a common basis for comparing findings and identifying the issues that still need to be clarified. Some consider “argyrophilia” to be a homogeneous phenomenon irrespective of the lesion and the method. Thus, they seek to explain the differences among the methods by pointing to their different sensitivities in detecting lesions (quantitative difference). Comparative studies, however, have demonstrated that argyrophilia is heterogeneous and dependent not only on the method but also on the lesion (qualitative difference). Each staining method has its own lesion-dependent specificity and, within this specificity, its own sensitivity. This “method- and lesion-dependent” nature of argyrophilia enables operational sorting of disease-specific lesions based on their silver-staining profiles, which may potentially represent some disease-specific aspects. Furthermore, comparisons between immunohistochemical and biochemical data have revealed an empirical correlation between GAL+/CS-deposits and 4-repeat (4R) tau (corticobasal degeneration, progressive supranuclear palsy and argyrophilic grains) and its complementary reversal between GAL-/CS+deposits and 3-repeat (3R) tau (Pick bodies). Deposits containing both 3R and 4R tau (neurofibrillary tangles of Alzheimer type) are GAL+/CS+. Although no molecular explanations, other than these empiric correlations, are currently available, these distinctive features, especially when combined with immunohistochemistry, are useful because silver-staining methods and immunoreactions are complementary to each other.

Journal ArticleDOI
TL;DR: Neurofibrillary tangle predominant dementia (NFTPD) is a subset of late onset dementia, clinically different from traditional “plaque and tangle” Alzheimer disease (AD): later onset, shorter duration, less severe cognitive impairment, and almost absence of ApoE ε4.
Abstract: Neurofibrillary tangle predominant dementia (NFTPD) is a subset of late onset dementia, clinically different from traditional "plaque and tangle" Alzheimer disease (AD): later onset, shorter duration, less severe cognitive impairment, and almost absence of ApoE epsilon4. Neuropathology reveals abundant allocortical neurofibrillary pathology with no or few isocortical tau lesions, absence of neuritic plaques, absence or scarcity of amyloid deposits, but neurofibrillary changes comprising both 3 and 4 repeat (3R and 4R) tau immunohistochemistry are not significantly different from those in classical AD. Comparing 51 autopsy cases of NFTPD with 244 classical AD subjects, the nosology of NFTPD and its differences from AD are discussed.

Journal ArticleDOI
Shinsuke Kato1
TL;DR: It can be concluded that ALS animal models can yield very important information for clarifying the pathogenesis of ALS in humans and for the establishment of reliable therapy only in combination with detailed neuropathological data obtained from human ALS autopsy cases.
Abstract: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that primarily involves the motor neuron system. The author initially summarizes the principal features of human ALS neuropathology, and subsequently describes in detail ALS animal models mainly from the viewpoint of pathological similarities and differences. ALS animal models in this review include strains of rodents that are transgenic for superoxide dismutase 1 (SOD1), ALS2 knockout mice, and mice that are transgenic for cytoskeletal abnormalities. Although the neuropathological results obtained from human ALS autopsy cases are valuable and important, almost all of such cases represent only the terminal stage. This makes it difficult to clarify how and why ALS motor neurons are impaired at each clinical stage from disease onset to death, and as a consequence, human autopsy cases alone yield little insight into potential therapies for ALS. Although ALS animal models cannot replicate human ALS, in order to compensate for the shortcomings of studies using human ALS autopsy samples, researchers must inevitably rely on ALS animal models that can yield very important information for clarifying the pathogenesis of ALS in humans and for the establishment of reliable therapy. Of course, human ALS and all ALS animal models share one most important similarity in that both exhibit motor neuron degeneration/death. This important point of similarity has shed much light on the pathomechanisms of the motor neuron degeneration/death at the cellular and molecular levels that would not have been appreciated if only human ALS autopsy samples had been available. On the basis of the aspects covered in this review, it can be concluded that ALS animal models can yield very important information for clarifying the pathogenesis of ALS in humans and for the establishment of reliable therapy only in combination with detailed neuropathological data obtained from human ALS autopsy cases.

Journal ArticleDOI
TL;DR: The main histological lesion in the brain of FRDA patients is neuronal atrophy and a peculiar proliferation of synaptic terminals in the dentate nucleus termed grumose degeneration, and this cerebellar nucleus may be especially susceptible to FRDA because it contains abundant iron.
Abstract: Frataxin deficiency in Friedreich’s ataxia (FRDA) causes cardiac, endocrine, and nervous system manifestations. Frataxin is a mitochondrial protein, and adequate amounts are essential for cellular iron homeostasis. The main histological lesion in the brain of FRDA patients is neuronal atrophy and a peculiar proliferation of synaptic terminals in the dentate nucleus termed grumose degeneration. This cerebellar nucleus may be especially susceptible to FRDA because it contains abundant iron. We examined total iron and selected iron-responsive proteins in the dentate nucleus of nine patients with FRDA and nine normal controls by biochemical and microscopic techniques. Total iron (1.53 ± 0.53 μmol/g wet weight) and ferritin (206.9 ± 46.6 μg/g wet weight) in FRDA did not significantly differ from normal controls (iron: 1.78 ± 0.88 μmol/g; ferritin: 210.9 ± 9.0 μg/g) but Western blots exhibited a shift to light ferritin subunits. Immunocytochemistry of the dentate nucleus revealed loss of juxtaneuronal ferritin-containing oligodendroglia and prominent ferritin immunoreactivity in microglia and astrocytes. Mitochondrial ferritin was not detectable by immunocytochemistry. Stains for the divalent metal transporter 1 confirmed neuronal loss while endothelial cells reacting with antibodies to transferrin receptor 1 protein showed crowding of blood vessels due to collapse of the normal neuropil. Regions of grumose degeneration were strongly reactive for ferroportin. Purkinje cell bodies, their dendrites and axons, were also ferroportin-positive, and it is likely that grumose degeneration is the morphological manifestation of mitochondrial iron dysmetabolism in the terminals of corticonuclear fibers. Neuronal loss in the dentate nucleus is the likely result of trans-synaptic degeneration.

Journal ArticleDOI
TL;DR: TDP-43 immunoreactivity is useful in differentiating FTLD-MND and ALS from other disorders associated with upper or lower motor neuron pathology, and reveals subclinical MND in a subset of cases of FTLD without clinical or pathologic evidence of MND.
Abstract: Motor neuron disorders are clinically and pathologically heterogeneous. They can be classified into those that affect primarily upper motor neurons, lower motor neurons or both. The most common disorder to affect both upper and lower motor neurons is amyotrophic lateral sclerosis (ALS). Some forms of motor neuron disease (MND) affect primarily motor neurons in the spinal cord or brainstem, while others affect motor neurons at all levels of the neuraxis. A number of genetic loci have been identified for the various motor neuron disorders. Several of the MND genes encode for proteins important for cytoskeletal stability and axoplasmic transport. Despite these genetic advances, the relationship of the various motor neuron disorders to each other is unclear. Except for rare familial forms of ALS associated with mutations in superoxide dismutase type 1 (SOD1), which are associated with neuronal inclusions that contain SOD1, specific molecular or cellular markers that differentiate ALS from other motor neuron disorders have not been available. Recently, the TAR DNA binding protein 43 (TDP-43) has been shown to be present in neuronal inclusions in ALS, and it has been suggested that TDP-43 may be a specific marker for ALS. This pilot study aimed to determine the value of TDP-43 in the differential diagnosis of MND. Immunohistochemistry for TDP-43 was used to detect neuronal inclusions in the medulla of disorders affecting upper motor neurons, lower motor neurons or both. Medullary motor neuron pathology also was assessed in frontotemporal lobar degeneration (FTLD) that had no evidence of MND. TDP-43 immunoreactivity was detected in the hypoglossal nucleus in all cases of ALS, all cases of FTLD-MND and some of cases of primary lateral sclerosis (PLS). It was not detected in FTLD-PLS. Surprisingly, sparse TDP-43 immunoreactivity was detected in motor neurons in about 10% of FTLD that did not have clinical or pathologic features of MND. The results suggest that TDP-43 immunoreactivity is useful in differentiating FTLD-MND and ALS from other disorders associated with upper or lower motor neuron pathology. It also reveals subclinical MND in a subset of cases of FTLD without clinical or pathologic evidence of MND.

Journal ArticleDOI
TL;DR: Although there are no models that fully represent the neuropathologic changes present in humans, the data obtained have provided evidence that clinical onset is not clearly associated with neuronal cell death, but depends on intranuclear accumulation of mutant proteins in neurons.
Abstract: CAG repeat diseases are hereditary neurodegenerative disorders caused by expansion of a polyglutamine tract in each respective disease protein. They include at least nine disorders, including Huntington’s disease (HD), dentatorubral pallidoluysian atrophy (DRPLA), spinal and bulbar muscular atrophy (SBMA), and the spinocerebellar ataxias SCA1, SCA2, SCA3 (also known as Machado-Joseph disease), SCA6, SCA7, and SCA17. It is thought that a gain of toxic function resulting from the protein mutation plays important and common roles in the pathogenesis of these diseases. Recent studies have disclosed that, in addition to the presence of clinical phenotypes and conventional neuropathology in each disease, human brains affected by CAG repeat diseases share several polyglutamine-related changes in their neuronal nuclei and cytoplasm including the formation of intranuclear inclusions. Although these novel pathologic changes also show a distribution pattern characteristic to each disease, they are generally present beyond the lesion distribution of neuronal loss, suggesting that neurons are affected much more widely than has been recognized previously. Various mouse models of CAG repeat diseases have revealed that CAG repeat lengths, which are responsible for polyglutamine diseases in humans, are not sufficient for creating the conditions characteristic of each disease in mice. Although high expression of mutant proteins in mice results in the successful generation of polyglutamine-related changes in the brain, there are still some differences from human pathology in the lesion distribution or cell types that are affected. In addition, no model has yet successfully reproduced the specific neuronal loss observed in humans. Although there are no models that fully represent the neuropathologic changes present in humans, the data obtained have provided evidence that clinical onset is not clearly associated with neuronal cell death, but depends on intranuclear accumulation of mutant proteins in neurons.

Journal ArticleDOI
TL;DR: The role and thus therapeutic potential of post-translational modifications (ubiquitinylation, oxidation, phosphorylation, truncation) and modifier genes on αSYN neuropathology can now be assessed in valid transgenic mouse models of α-synucleinopathies.
Abstract: Point mutations and genomic multiplications in the α-synuclein (αSYN) gene cause autosomal-dominant Parkinson’s disease. Moreover, αSYN fibrils are the major component of Lewy bodies, the neuropathological hallmarks of Parkinson’s disease and dementia with Lewy bodies as well as of glial cytoplasmic inclusions in multiple system atrophy. These diseases are collectively referred to as α-synucleinopathies. Cellular mechanisms regulating αSYN fibril formation and toxicity are intensely studied in vitro, and in cell culture and diverse animal models. Specific neuropathology was achieved in transgenic mouse models using several promoters to express human wild-type and mutant αSYN in brain regions affected by the various α-synucleinopathies. Somatodendritic accumulation of the transgenic αSYN with neuritic distortions was a common finding. The nigrostriatal dopaminergic projections were surprisingly resistant to α-synucleinopathy in transgenic mice, although they tended to be more vulnerable to neurotoxins. In a few mouse models, αSYN aggregated in an age-dependent manner into genuine fibrillar amyloid. Brain region selective αSYN neuropathology correlated with specific behavioral impairments, such as locomotor dysfunction and cognitive decline. Thus, the αSYN fibrillization process is tightly linked to neuropathology. The role and thus therapeutic potential of post-translational modifications (ubiquitinylation, oxidation, phosphorylation, truncation) and modifier genes on αSYN neuropathology can now be assessed in valid transgenic mouse models of α-synucleinopathies.

Journal ArticleDOI
TL;DR: Using BrdU-labeling, quantitative immunohistochemistry and 3-D reconstruction of confocal images, it is found that aged rats are predisposed to rapidly develop an infarct within the first few days after ischemia, and aging is associated with rapidinfarct development and a poor prognosis for full recovery from stroke.
Abstract: Old age is associated with a deficient recovery from stroke, but the cellular mechanisms underlying such phenomena are poorly understood. To address this issue, focal cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery in 3- and 20-month-old male Sprague–Dawley rats. Aged rats showed a delayed and suboptimal functional recovery in the post-stroke period. Using BrdU-labeling, quantitative immunohistochemistry and 3-D reconstruction of confocal images, we found that aged rats are predisposed to rapidly develop an infarct within the first few days after ischemia. The emergence of the necrotic zone is associated with a high rate of cellular degeneration, premature accumulation of proliferating BrdU-positive cells that appear to emanate from capillaries in the infarcted area, and a large number of apoptotic cells. With double labeling techniques, we were able to identify, for the first time, over 60% of BrdU-positive cells either as reactive microglia (45%), oligodendrocyte progenitors (17%), astrocytes (23%), CD8+ lymphocytes (4%), or apoptotic cells (<1%). Paradoxically, despite a robust reactive phenotype of microglia and astrocytes in aged rats, at 1-week post-stroke, the number of proliferating microglia and astrocytes was lower in aged rats than in young rats. Our data indicate that aging is associated with rapid infarct development and a poor prognosis for full recovery from stroke that is correlated with premature cellular proliferation and increased cellular degeneration and apoptosis in the infarcted area.

Journal ArticleDOI
TL;DR: This review aims to give an overview about the growing field of common growth factors and receptors within the two different networks of vascular and neurological diseases.
Abstract: Growth factors and their respective receptors are key regulators during development and for homeostasis of the nervous system. In addition, changes in growth factor function, availability or downstream signaling is involved in many neuropathological disorders like Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, stroke and brain tumours. Research of the recent years revealed that some growth factors, initially discovered as neural growth factors are also affecting blood vessels [e.g. nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF)]. Likewise, vascular growth factors, such as vascular endothelial growth factor (VEGF), which was previously described as an endothelial cell specific mitogen, also affect neural cells. The discovery of shared growth factors affecting the vascular and the nervous system is of relevance for potential therapies of vascular and neurological diseases. This review aims to give an overview about the growing field of common growth factors and receptors within the two different networks.

Journal ArticleDOI
TL;DR: Marked variation in the disease course and clinical features are common, not only between families with different mutations, but also within individual families, which makes it difficult to predict which cases of familial FTD will turn out to have a PGRN mutation.
Abstract: Mutations in the progranulin gene (PGRN), on chromosome 17q21, have recently been identified as a major cause of familial frontotemporal dementia (FTD). These cases have a characteristic pattern of neuropathology that is a distinct subtype of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U), with lentiform neuronal intranuclear inclusions being a consistent feature. There is no abnormal accumulation of PGRN protein in the brain and immunohistochemical and biochemical analysis indicates that the ubiquitinated pathological protein is TDP-43. In these families, FTD is inherited in an autosomal dominant fashion with high penetrance. The clinical phenotype is usually a combination of behavioural abnormality and language disturbance that is most often a form of primary progressive aphasia. Mild parkinsonism is common but motor neuron disease is notably rare. Marked variation in the disease course and clinical features are common, not only between families with different mutations, but also within individual families. This degree of clinical variability makes it difficult to predict which cases of familial FTD will turn out to have a PGRN mutation.

Journal ArticleDOI
TL;DR: Results indicate that RAS/RAF pathway activation in gliomas is achieved much more frequently by copy number gains including RAS-RAF and/or upstream growth factor (receptor) than by activating RAS /RAF mutations.
Abstract: Aberrant RAS/RAF signaling has been reported to be important for many tumor types including gliomas. Activation of the RAS/RAF pathway can result from oncogenic mutations of RAS/RAF itself. However, such mutations have only occasionally been reported in gliomas. In order to further elucidate the role of RAS/RAF pathway activation in a histopathological and genetic spectrum of glioma subtypes (n = 93), we evaluated different types of aberrations in this pathway. Hotspot mutation analysis of BRAF, NRAS, KRAS, and HRAS revealed only two mutations, V600M in BRAF and G10E in NRAS, both occurring in pure oligodendroglial tumors. However, CGH analysis of 87 tumors revealed copy number gains including the above mentioned oncogenes in 38 of the neoplasms (44%) and including the upstream growth factors EGF, PDGF, IGF, FGF, TGF and/or their receptors in 46 tumors (53%). Phosphorylated MAPK (i.e. the activated compound downstream the RAS/RAF pathway) was detected by immunohistochemistry using tissue micro-arrays in the majority of gliomas. Interestingly, a significant correlation was found for nuclear MAPK-P staining and the number of these copy number gains ( or= 3). These results indicate that RAS/RAF pathway activation in gliomas is achieved much more frequently by copy number gains including RAS/RAF and/or upstream growth factor (receptor) than by activating RAS/RAF mutations.