scispace - formally typeset
Search or ask a question
JournalISSN: 1438-1656

Advanced Engineering Materials 

Wiley-Blackwell
About: Advanced Engineering Materials is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Microstructure & Alloy. It has an ISSN identifier of 1438-1656. Over the lifetime, 6158 publications have been published receiving 142961 citations. The journal is also known as: DGM aktuell.
Topics: Microstructure, Alloy, Engineering, Ceramic, Chemistry


Papers
More filters
Journal ArticleDOI
TL;DR: A new approach for the design of alloys is presented in this paper, where high-entropy alloys with multi-principal elements were synthesized using well-developed processing technologies.
Abstract: A new approach for the design of alloys is presented in this study. These high-entropy alloys with multi-principal elements were synthesized using well-developed processing technologies. Preliminary results demonstrate examples of the alloys with simple crystal structures, nanostructures, and promising mechanical properties. This approach may be opening a new era in materials science and engineering.

8,175 citations

Journal ArticleDOI
TL;DR: In this article, the factors of the atomic size difference Delta and the enthalpy of mixing ΔH mιx of the multi-component alloys were summarized from the literatures.
Abstract: The factors of the atomic size difference Delta and the enthalpy of mixing ΔH mιx of the multi-component alloys were summarized from the literatures. The formation zones of solid-solution phases, intermediate phases, and bulk metallic glasses were determined and the validity was verified by experimental results. For forming the solid solution, the alloys should have high entropy of mixing, lower Delta, and not too negative and positive enthalpy of mixing.

1,936 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed review of the corrosion mechanisms of magnesium alloys is presented, and the basis for the design of new alloys with improved corrosion properties is provided for improving the corrosion properties.
Abstract: The high strength to weight ratio of magnesium alloys makes them extremely attractive for applications in transport or aerospace technology. However, their corrosion behavior is a major issue and one reason why they are still not as popular as aluminum alloys. This papers reviews the corrosion mechanisms of magnesium and provides the basis for the design of new alloys with improved corrosion properties.

1,922 citations

Journal ArticleDOI
TL;DR: In this article, a mechanistic overview of the various types of magnesium corrosion is provided, and a theoretical framework for further, much needed research is provided. But, as stated in the introduction, "There is still vast scope both for better fundamental understanding of corrosion processes, engineering usage of magnesium, and also on the corrosion protection of magnesium alloys in service".
Abstract: The purpose of this paper is to provide a succinct but nevertheless complete mechanistic overview of the various types of magnesium corrosion. The understanding of the corrosion processes of magnesium alloys builds upon our understanding of the corrosion of pure magnesium. This provides an understanding of the types of corrosion exhibited by,magnesium alloys, and also of the environmental factors Of most importance. This deep understanding is required as a foundation if we are to produce magnesium alloys much more resistant to corrosion than the present alloys. Much has already been achieved, but there is vast scope for improvement. This present analysis can provide a foundation and a theoretical framework for further, much needed research. There is still vast scope both for better fundamental understanding of corrosion processes, engineering usage of magnesium, and also on the corrosion protection of magnesium alloys in service.

1,713 citations

Journal ArticleDOI
Sylvain Deville1
TL;DR: In this article, the authors provide a first understanding of the process as of today, with particular attention being paid on the underlying principles of the structure formation mechanisms and the influence of processing parameters on the structure.
Abstract: Freeze-casting of porous ceramics have seen a great deal of efforts during the last few years. The objective of this review is to provide a first understanding of the process as of today. This analysis highlights the current limits of both the understanding and the control of the process. A few perspectives are given, with regards of the current achievements, interests and identified issues. 2 Abstract Freeze-casting, the templating of porous structure by the solidification of a solvent, have seen a great deal of efforts during the last few years. Of particular interest are the unique structure and properties exhibited by porous freeze-casted ceramics, which opened new opportunities in the field of cellular ceramics. The objective of this review is to provide a first understanding of the process as of today, with particular attention being paid on the underlying principles of the structure formation mechanisms and the influence of processing parameters on the structure. This analysis highlights the current limits of both the understanding and the control of the process. A few perspectives are given, with regards of the current achievements, interests and identified issues.

980 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023491
2022686
2021622
2020411
2019398
2018403