scispace - formally typeset
Search or ask a question

Showing papers in "Advanced Functional Materials in 2019"



Journal ArticleDOI
TL;DR: A review of photodetectors based on 2D materials covering the detection spectrum from ultraviolet to infrared is presented in this paper, where a brief insight into the detection mechanisms of 2D material photodeterceptors as well as introducing the figure-of-merits which are key factors for a reasonable comparison between different photoderectors is provided.
Abstract: 2D material based photodetectors have attracted many research projects due to their unique structures and excellent electronic and optoelectronic properties. These 2D materials, including semimetallic graphene, semiconducting black phosphorus, transition metal dichalcogenides, insulating hexagonal boron nitride, and their various heterostructures, show a wide distribution in bandgap values. To date, hundreds of photodetectors based on 2D materials have been reported. Here, a review of photodetectors based on 2D materials covering the detection spectrum from ultraviolet to infrared is presented. First, a brief insight into the detection mechanisms of 2D material photodetectors as well as introducing the figure-of-merits which are key factors for a reasonable comparison between different photodetectors is provided. Then, the recent progress on 2D material based photodetectors is reviewed. Particularly, the excellent performances such as broadband spectrum detection, ultrahigh photoresponsivity and sensitivity, fast response speed and high bandwidth, polarization-sensitive detection are pointed out on the basis of the state-of-the-art 2D photodetectors. Initial applications based on 2D material photodetectors are mentioned. Finally, an outlook is delivered, the challenges and future directions are discussed, and general advice for designing and realizing novel high-performance photodetectors is given to provide a guideline for the future development of this fast-developing field.

745 citations










Journal ArticleDOI
TL;DR: In this paper, a review of the latest advances in stretchable transparent electrodes based on a new design strategy known as kirigami (the art of paper cutting) is presented.
Abstract: Flexible electronics, as an emerging and exciting research field, have brought great interest to the issue of how to make flexible electronic materials that offer both durability and high performance at strained states. With the advent of on-body wearable and implantable electronics, as well as increasing demands for human-friendly intelligent soft robots, enormous effort is being expended on highly flexible functional materials, especially stretchable electrodes, by both the academic and industrial communities. Among different deformation modes, stretchability is the most demanding and challenging. This review focuses on the latest advances in stretchable transparent electrodes based on a new design strategy known as kirigami (the art of paper cutting) and investigates the recent progress on novel applications, including skin-like electronics, implantable biodegradable devices, and bioinspired soft robotics. By comparing the optoelectrical and mechanical properties of different electrode materials, some of the most important outcomes with comments on their merits and demerits are raised. Key design considerations in terms of geometries, substrates, and adhesion are also discussed, offering insights into the universal strategies for engineering stretchable electrodes regardless of the material. It is suggested that highly stretchable and biocompatible electrodes will greatly boost the development of next-generation intelligent life-like electronics.

Journal ArticleDOI
TL;DR: In this article, a dual-modification strategy of synchronous synthesis and in situ modification of LiNi0.8Co0.1Mn 0.1O2 cathodes was proposed to solve the problem of fast capacity drop and voltage fading due to the interfacial instability and bulk structural degradation of the cathodes during battery operation.
Abstract: A critical challenge in the commercialization of layer-structured Ni-rich materials is the fast capacity drop and voltage fading due to the interfacial instability and bulk structural degradation of the cathodes during battery operation. Herein, with the guidance of theoretical calculations of migration energy difference between La and Ti from the surface to the inside of LiNi0.8Co0.1Mn0.1O2, for the first time, Ti-doped and La4NiLiO8-coated LiNi0.8Co0.1Mn0.1O2 cathodes are rationally designed and prepared, via a simple and convenient dual-modification strategy of synchronous synthesis and in situ modification. Impressively, the dual modified materials show remarkably improved electrochemical performance and largely suppressed voltage fading, even under exertive operational conditions at elevated temperature and under extended cutoff voltage. Further studies reveal that the nanoscale structural degradation on material surfaces and the appearance of intergranular cracks associated with the inconsistent evolution of structural degradation at the particle level can be effectively suppressed by the synergetic effect of the conductive La4NiLiO8 coating layer and the strong TiO bond. The present work demonstrates that our strategy can simultaneously address the two issues with respect to interfacial instability and bulk structural degradation, and it represents a significant progress in the development of advanced cathode materials for high-performance lithium-ion batteries.

Journal ArticleDOI
TL;DR: In this paper, the NSFC (Grant Nos. 11575085, 51602154, 11472131, and 11622218), the Aeronautics Science Foundation of China (Grant No. 2017ZF52066), the Qing Lan Project, Six talent peaks project in Jiangsu Province (Project No. XCL-035), the Jiangsu NSF (BK20160037), the program of China Scholarships Council (Program No. 201806830013), Funding for Outstanding Doctoral Dissertation in NUAA (BCXJ
Abstract: Financial supports from the NSFC (Grant Nos. 11575085, 51602154, 11472131, and 11622218), the Aeronautics Science Foundation of China (Grant No. 2017ZF52066), the Qing Lan Project, Six talent peaks project in Jiangsu Province (Project No. XCL-035), the Jiangsu NSF (BK20160037), the program of China Scholarships Council (Grant No. 201806830013), Funding for Outstanding Doctoral Dissertation in NUAA (BCXJ 18-07), the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology of Nanjing University, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) are gratefully acknowledged.


Journal ArticleDOI
TL;DR: This review not only provides a comprehensive summary on BP preparation and biomedical applications but also summarizes recent research and future possibilities.



Journal ArticleDOI
TL;DR: In this paper, the oxide/sulfide heterostructures (N-NiMoO4/NiS2 nanowires/nanosheets) were constructed as a multisite HER/OER catalyst.
Abstract: Developing bifunctional efficient electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is in high demand for the development of overall water-splitting devices. In particular, the electrocatalytic performance can be largely improved by designing positive nanoscale-heterojunction with well-tuned interfaces. Herein, a novel top-down strategy is reported to construct the oxide/sulfide heterostructures (N-NiMoO4/NiS2 nanowires/nanosheets) as a multisite HER/OER catalyst. Starting with the NiMoO4 nanowires, nitridation in a controlled manner enables activation of Ni sites in NiMoO4 and then yields oxide/sulfide heterojunction by directly vulcanizing the highly composition-segregated N-NiMoO4 nanowires. The abundant epitaxial heterogeneous interfaces at atomic-level facilitate the electron transfer from N-NiMoO4 to NiS2, which further cooperate synergistically toward both the hydrogen and oxygen generation in alkali solution. Furthermore, with N-NiMoO4/NiS2 grown carbon fiber cloth as the engineering electrode, the assembled N-NiMoO4/NiS2-N-NiMoO4/NiS2 system can deliver a current density of 10 mA cm(-2) with the cell voltage of 1.60 V in the water-splitting reaction. This current density is 3.39 times higher than that of the Pt-Ir set (2.95 mA cm(-2)). The excellent catalytic performance offered of N-NiMoO4/NiS2 nanowires/nanosheets presents a great example to demonstrate the significance of interface engineering in the field of electrocatalysis.


Journal ArticleDOI
TL;DR: In this article, a new environment-friendly 0.76NaNbO3-0.24(Bi0.5Na 0.5)TiO3 relaxor antiferroelectric (AFE) bulk ceramic is studied, where local orthorhombic Pnma symmetry (R phase) and nanodomains are observed based on high-resolution transmission electron microscopy, selected area electron diffraction, and in/ex situ synchrotron X-ray diffraction.
Abstract: Dielectric energy-storage capacitors have received increasing attention in recent years due to the advantages of high voltage, high power density, and fast charge/discharge rates. Here, a new environment-friendly 0.76NaNbO3–0.24(Bi0.5Na0.5)TiO3 relaxor antiferroelectric (AFE) bulk ceramic is studied, where local orthorhombic Pnma symmetry (R phase) and nanodomains are observed based on high-resolution transmission electron microscopy, selected area electron diffraction, and in/ex situ synchrotron X-ray diffraction. The orthorhombic AFE R phase and relaxor characteristics synergistically contribute to the record-high energy-storage density Wrec of ≈12.2 J cm−3 and acceptable energy efficiency η ≈ 69% at 68 kV mm−1, showing great advantages over currently reported bulk dielectric ceramics. In comparison with normal AFEs, the existence of large random fields in the relaxor AFE matrix and intrinsically high breakdown strength of NaNbO3-based compositions are thought to be responsible for the observed energy-storage performances. Together with the good thermal stability of Wrec (>7.4 J cm−3) and η (>73%) values at 45 kV mm−1 up to temperature of 200 °C, it is demonstrated that NaNbO3-based relaxor AFE ceramics will be potential lead-free dielectric materials for next-generation pulsed power capacitor applications.




Journal ArticleDOI
Shilei Dai1, Yiwei Zhao1, Yan Wang1, Junyao Zhang1, Lu Fang1, Shu Jin1, Yinlin Shao1, Jia Huang1 
TL;DR: A review of recent advances in transistor‐based artificial synapses is presented to give a guideline for future implementation of synaptic functions with transistors and the main challenges and research directions of transistor‐ based artificial synapse are presented.

Journal ArticleDOI
TL;DR: In this article, a 3D structured hydrogel from 2D MXene sheets that is assisted by graphene oxide and a suitable reductant is reported to achieve a superb capacitance up to 370 F g−1 at 5 A G−1.
Abstract: Assembly of 2D MXene sheets into a 3D macroscopic architecture is highly desirable to overcome the severe restacking problem of 2D MXene sheets and develop MXene‐based functional materials. However, unlike graphene, 3D MXene macroassembly directly from the individual 2D sheets is hard to achieve for the intrinsic property of MXene. Here a new gelation method is reported to prepare a 3D structured hydrogel from 2D MXene sheets that is assisted by graphene oxide and a suitable reductant. As a supercapacitor electrode, the hydrogel delivers a superb capacitance up to 370 F g−1 at 5 A g−1, and more promisingly, demonstrates an exceptionally high rate performance with the capacitance of 165 F g−1 even at 1000 A g−1. Moreover, using controllable drying processes, MXene hydrogels are transformed into different monoliths with structures ranging from a loosely organized porous aerogel to a dense solid. As a result, a 3D porous MXene aerogel shows excellent adsorption capacity to simultaneously remove various classes of organic liquids and heavy metal ions while the dense solid has excellent mechanical performance with a high Young's modulus and hardness.

Journal ArticleDOI
TL;DR: Boosting the Photocatalytic Ability of Cu2O Nanowires for CO2 Conversion by MXene Quantum Dots as discussed by the authors, was proposed to improve the performance of CO2 conversion.
Abstract: Boosting the Photocatalytic Ability of Cu2O Nanowires for CO2 Conversion by MXene Quantum Dots

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the applications of inorganic ultrawide-bandgap (UWBG) semiconductors for solar-blind DUV light detection in the past several decades is presented.
Abstract: Due to its significant applications in many relevant fields, light detection in the solar-blind deep-ultraviolet (DUV) wavelength region is a subject of great interest for both scientific and industrial communities. The rapid advances in preparing high-quality ultrawide-bandgap (UWBG) semiconductors have enabled the realization of various high-performance DUV photodetectors (DUVPDs) with different geometries, which provide an avenue for circumventing numerous disadvantages in traditional DUV detectors. This article presents a comprehensive review of the applications of inorganic UWBG semiconductors for solar-blind DUV light detection in the past several decades. Different kinds of DUVPDs, which are based on varied UWBG semiconductors including Ga2O3, MgxZn1−xO, III-nitride compounds (AlxGa1−xN/AlN and BN), diamond, etc., and operate on different working principles, are introduced and discussed systematically. Some emerging techniques to optimize device performance are addressed as well. Finally, the existing techniques are summarized and future challenges are proposed in order to shed light on development in this critical research field.

Journal ArticleDOI
TL;DR: In this article, the authors recognized that electrochemical water splitting is a practical strategy for impelling the transformation of sustainable energy sources such as solar energy from electricity to clean hydrogen fuel.
Abstract: Electrochemical water splitting is recognized as a practical strategy for impelling the transformation of sustainable energy sources such as solar energy from electricity to clean hydrogen fuel. To ...


Journal ArticleDOI
TL;DR: In this paper, a shape memory polymer layer was added to the actuator body to enhance its stiffness by up to 120 times without sacrificing flexibility and adaptivity, and the printed Joule-heating circuit and fluidic cooling microchannel enable fast heating and cooling rates and allow the FRST actuator to complete a softening-stiffening cycle within 32 s.
Abstract: Soft robots have the appealing advantages of being highly flexible and adaptive to complex environments. However, the low-stiffness nature of the constituent materials makes soft robotic systems incompetent in tasks requiring relatively high load capacity. Despite recent attempts to develop stiffness-tunable soft actuators by employing variable stiffness materials and structures, the reported stiffness-tunable actuators generally suffer from limitations including slow responses, small deformations, and difficulties in fabrication with microfeatures. This work presents a paradigm to design and manufacture fast-response, stiffness-tunable (FRST) soft actuators via hybrid multimaterial 3D printing. The integration of a shape memory polymer layer into the fully printed actuator body enhances its stiffness by up to 120 times without sacrificing flexibility and adaptivity. The printed Joule-heating circuit and fluidic cooling microchannel enable fast heating and cooling rates and allow the FRST actuator to complete a softening–stiffening cycle within 32 s. Numerical simulations are used to optimize the load capacity and thermal rates. The high load capacity and shape adaptivity of the FRST actuator are finally demonstrated by a robotic gripper with three FRST actuators that can grasp and lift objects with arbitrary shapes and various weights spanning from less than 10 g to up to 1.5 kg.