scispace - formally typeset
Search or ask a question

Showing papers in "Advanced Science in 2019"


Journal ArticleDOI
Nadav Noor1, Assaf Shapira1, Reuven Edri1, Idan Gal1, Lior Wertheim1, Tal Dvir 
TL;DR: A simple approach to 3D‐print thick, vascularized, and perfusable cardiac patches that completely match the immunological, cellular, biochemical, and anatomical properties of the patient is reported and cellularized human hearts with a natural architecture are printed.
Abstract: Generation of thick vascularized tissues that fully match the patient still remains an unmet challenge in cardiac tissue engineering. Here, a simple approach to 3D-print thick, vascularized, and perfusable cardiac patches that completely match the immunological, cellular, biochemical, and anatomical properties of the patient is reported. To this end, a biopsy of an omental tissue is taken from patients. While the cells are reprogrammed to become pluripotent stem cells, and differentiated to cardiomyocytes and endothelial cells, the extracellular matrix is processed into a personalized hydrogel. Following, the two cell types are separately combined with hydrogels to form bioinks for the parenchymal cardiac tissue and blood vessels. The ability to print functional vascularized patches according to the patient's anatomy is demonstrated. Blood vessel architecture is further improved by mathematical modeling of oxygen transfer. The structure and function of the patches are studied in vitro, and cardiac cell morphology is assessed after transplantation, revealing elongated cardiomyocytes with massive actinin striation. Finally, as a proof of concept, cellularized human hearts with a natural architecture are printed. These results demonstrate the potential of the approach for engineering personalized tissues and organs, or for drug screening in an appropriate anatomical structure and patient-specific biochemical microenvironment.

635 citations


Journal ArticleDOI
TL;DR: CPDs are revealed as an emerging class of CDs with distinctive polymer/carbon hybrid structures and properties, and critical insights into facilitating their potential in various application fields are proposed.
Abstract: Despite the various synthesis methods to obtain carbon dots (CDs), the bottom-up methods are still the most widely administrated route to afford large-scale and low-cost synthesis. However, as CDs are developed with increasing reports involved in producing many CDs, the structure and property features have changed enormously compared with the first generation of CDs, raising classification concerns. To this end, a new classification of CDs, named carbonized polymer dots (CPDs), is summarized according to the analysis of structure and property features. Here, CPDs are revealed as an emerging class of CDs with distinctive polymer/carbon hybrid structures and properties. Furthermore, deep insights into the effects of synthesis on the structure/property features of CDs are provided. Herein, the synthesis methods of CDs are also summarized in detail, and the effects of synthesis conditions of the bottom-up methods in terms of the structures and properties of CPDs are discussed and analyzed comprehensively. Insights into formation process and nucleation mechanism of CPDs are also offered. Finally, a perspective of the future development of CDs is proposed with critical insights into facilitating their potential in various application fields.

631 citations


Journal ArticleDOI
TL;DR: This work stresses the importance of developing CP films and reveals their critical role in the evolution of these next‐generation devices featuring wearable, deformable, printable, ultrathin, and see‐through characteristics.
Abstract: Substantial effort has been devoted to both scientific and technological developments of wearable, flexible, semitransparent, and sensing electronics (e.g., organic/perovskite photovoltaics, organic thin-film transistors, and medical sensors) in the past decade. The key to realizing those functionalities is essentially the fabrication of conductive electrodes with desirable mechanical properties. Conductive polymers (CPs) of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) have emerged to be the most promising flexible electrode materials over rigid metallic oxides and play a critical role in these unprecedented devices as transparent electrodes, hole transport layers, interconnectors, electroactive layers, or motion-sensing conductors. Here, the current status of research on PEDOT:PSS is summarized including various approaches to boosting the electrical conductivity and mechanical compliance and stability, directly linked to the underlying mechanism of the performance enhancements. Along with the basic principles, the most cutting edge-progresses in devices with PEDOT:PSS are highlighted. Meanwhile, the advantages and plausible problems of the CPs and as-fabricated devices are pointed out. Finally, new perspectives are given for CP modifications and device fabrications. This work stresses the importance of developing CP films and reveals their critical role in the evolution of these next-generation devices featuring wearable, deformable, printable, ultrathin, and see-through characteristics.

478 citations


Journal ArticleDOI
TL;DR: Recent progress in MOF‐based stimuli‐responsive systems is presented, including pH‐, magnetic‐, ion‐, temperature‐, pressure‐, light‐, humidity‐, redox‐, and multiple stimuli‐ responsive systems for the delivery of anticancer drugs.
Abstract: With the rapid development of nanotechnology, stimuli-responsive nanomaterials have provided an alternative for designing controllable drug delivery systems due to their spatiotemporally controllable properties. As a new type of porous material, metal-organic frameworks (MOFs) have been widely used in biomedical applications, especially drug delivery systems, owing to their tunable pore size, high surface area and pore volume, and easy surface modification. Here, recent progress in MOF-based stimuli-responsive systems is presented, including pH-, magnetic-, ion-, temperature-, pressure-, light-, humidity-, redox-, and multiple stimuli-responsive systems for the delivery of anticancer drugs. The remaining challenges and suggestions for future directions for the rational design of MOF-based nanomedicines are also discussed.

434 citations


Journal ArticleDOI
TL;DR: The optimal MoS2/NiS2 nanosheets show the enhanced Electrocatalytic performances as bifunctional electrocatalysts for overall water splitting and may open up a new route for rationally constructing heterogeneous interfaces to maximize their electrochemical performances, which may help to accelerate the development of nonprecious electrocatalyststs.
Abstract: Designing and constructing bifunctional electrocatalysts is vital for water splitting. Particularly, the rational interface engineering can effectively modify the active sites and promote the electronic transfer, leading to the improved splitting efficiency. Herein, free-standing and defect-rich heterogeneous MoS2/NiS2 nanosheets for overall water splitting are designed. The abundant heterogeneous interfaces in MoS2/NiS2 can not only provide rich electroactive sites but also facilitate the electron transfer, which further cooperate synergistically toward electrocatalytic reactions. Consequently, the optimal MoS2/NiS2 nanosheets show the enhanced electrocatalytic performances as bifunctional electrocatalysts for overall water splitting. This study may open up a new route for rationally constructing heterogeneous interfaces to maximize their electrochemical performances, which may help to accelerate the development of nonprecious electrocatalysts for overall water splitting.

430 citations


Journal ArticleDOI
TL;DR: This study reports on the construction of an efficient biomimetic dual inorganic nanozyme‐based nanoplatform, which triggers cascade catalytic reactions for tumor microenvironment responsive nanocatalytic tumor therapy based on ultrasmall Au and Fe3O4 NPs coloaded dendritic mesoporous silica NPs.
Abstract: Emerging nanocatalytic tumor therapies based on nontoxic but catalytically active inorganic nanoparticles (NPs) for intratumoral production of high-toxic reactive oxygen species have inspired great research interest in the scientific community. Nanozymes exhibiting natural enzyme-mimicking catalytic activities have been extensively explored in biomedicine, mostly in biomolecular detection, yet much fewer researches are available on specific nanocatalytic tumor therapy. This study reports on the construction of an efficient biomimetic dual inorganic nanozyme-based nanoplatform, which triggers cascade catalytic reactions for tumor microenvironment responsive nanocatalytic tumor therapy based on ultrasmall Au and Fe3O4 NPs coloaded dendritic mesoporous silica NPs. Au NPs as the unique glucose oxidase-mimic nanozyme specifically catalyze β-D-glucose oxidation into gluconic acid and H2O2, while the as produced H2O2 is subsequently catalyzed by the peroxidase-mimic Fe3O4 NPs to liberate high-toxic hydroxyl radicals for inducing tumor-cell death by the typical Fenton-based catalytic reaction. Extensive in vitro and in vivo evaluations have demonstrated high nanocatalytic-therapeutic efficacy with a desirable tumor-suppression rate (69.08%) based on these biocompatible composite nanocatalysts. Therefore, this work paves a way for nanocatalytic tumor therapy by rationally designing inorganic nanozymes with multienzymatic activities for achieving high therapeutic efficacy and excellent biosafety simultaneously.

387 citations


Journal ArticleDOI
TL;DR: Recent advancements of COFs as a designer platform for a plethora of applications are emphasized together with discussions about the strategies and principles involved.
Abstract: Covalent organic frameworks (COFs) are an emerging class of functional nanostructures with intriguing properties, due to their unprecedented combination of high crystallinity, tunable pore size, large surface area, and unique molecular architecture. The range of properties characterized in COFs has rapidly expanded to include those of interest for numerous applications ranging from energy to environment. Here, a background overview is provided, consisting of a brief introduction of porous materials and the design feature of COFs. Then, recent advancements of COFs as a designer platform for a plethora of applications are emphasized together with discussions about the strategies and principles involved. Finally, challenges remaining for this type material for real applications are outlined.

348 citations


Journal ArticleDOI
TL;DR: The flexible SERS substrates with low‐cost, batch‐fabrication, and easy‐to‐operate characteristics can be integrated into portable Raman spectroscopes for point‐of‐care diagnostics, which are conceivable to penetrate global markets and households as next‐generation wearable sensors in the near future.
Abstract: Surface-enhanced Raman scattering (SERS) spectroscopy provides a noninvasive and highly sensitive route for fingerprint and label-free detection of a wide range of molecules. Recently, flexible SERS has attracted increasingly tremendous research interest due to its unique advantages compared to rigid substrate-based SERS. Here, the latest advances in flexible substrate-based SERS diagnostic devices are investigated in-depth. First, the intriguing prospect of point-of-care diagnostics is briefly described, followed by an introduction to the cutting-edge SERS technique. Then, the focus is moved from conventional rigid substrate-based SERS to the emerging flexible SERS technique. The main part of this report highlights the recent three categories of flexible SERS substrates, including actively tunable SERS, swab-sampling strategy, and the in situ SERS detection approach. Furthermore, other promising means of flexible SERS are also introduced. The flexible SERS substrates with low-cost, batch-fabrication, and easy-to-operate characteristics can be integrated into portable Raman spectroscopes for point-of-care diagnostics, which are conceivable to penetrate global markets and households as next-generation wearable sensors in the near future.

348 citations


Journal ArticleDOI
TL;DR: The existing challenges and future perspectives of this exciting field are discussed and the promising applications of hydrogel actuators are presented, highlighting the development of multifunctional hydrogEL actuators.
Abstract: Polymeric hydrogel actuators refer to intelligent stimuli-responsive hydrogels that could reversibly deform upon the trigger of various external stimuli. They have thus aroused tremendous attention and shown promising applications in many fields including soft robots, artificial muscles, valves, and so on. After a brief introduction of the driving forces that contribute to the movement of living creatures, an overview of the design principles and development history of hydrogel actuators is provided, then the diverse anisotropic structures of hydrogel actuators are summarized, presenting the promising applications of hydrogel actuators, and highlighting the development of multifunctional hydrogel actuators. Finally, the existing challenges and future perspectives of this exciting field are discussed.

336 citations


Journal ArticleDOI
TL;DR: This Progress Report summarizes recent advances in the understanding and applications of plasmonic photothermal nanoparticles, particularly for sensing, imaging, therapy, and drug delivery, and discusses the future directions of these fields.
Abstract: Recent advances of plasmonic nanoparticles include fascinating developments in the fields of energy, catalyst chemistry, optics, biotechnology, and medicine. The plasmonic photothermal properties of metallic nanoparticles are of enormous interest in biomedical fields because of their strong and tunable optical response and the capability to manipulate the photothermal effect by an external light source. To date, most biomedical applications using photothermal nanoparticles have focused on photothermal therapy; however, to fully realize the potential of these particles for clinical and other applications, the fundamental properties of photothermal nanoparticles need to be better understood and controlled, and the photothermal effect-based diagnosis, treatment, and theranostics should be thoroughly explored. This Progress Report summarizes recent advances in the understanding and applications of plasmonic photothermal nanoparticles, particularly for sensing, imaging, therapy, and drug delivery, and discusses the future directions of these fields.

334 citations


Journal ArticleDOI
TL;DR: The advantages and limitations of the various methods commonly used for NH3 quantification in solution (Nessler's reagent method, indophenol blue method, and ion chromatography method), placing particular emphasis on the effect of interferants on each quantification method are systematically explored.
Abstract: The enzyme nitrogenase inspires the development of novel photocatalytic and electrocatalytic systems that can drive nitrogen reduction with water under similar low-temperature and low-pressure conditions. While photocatalytic and electrocatalytic N2 fixation are emerging as hot new areas of fundamental and applied research, serious concerns exist regarding the accuracy of current methods used for ammonia detection and quantification. In most studies, the ammonia yields are low and little consideration is given to the effect of interferants on NH3 quantification. As a result, NH3 yields reported in many works may be exaggerated and erroneous. Herein, the advantages and limitations of the various methods commonly used for NH3 quantification in solution (Nessler's reagent method, indophenol blue method, and ion chromatography method) are systematically explored, placing particular emphasis on the effect of interferants on each quantification method. Based on the data presented, guidelines are suggested for responsible quantification of ammonia in photocatalysis and electrocatalysis.

Journal ArticleDOI
TL;DR: The carbon nanostructures and related nanocomposites represent the developing orientation of high‐performance EM wave absorption materials and the shortcomings, challenges, and prospects are presented.
Abstract: With the booming development of electronic information technology, the problems caused by electromagnetic (EMs) waves have gradually become serious, and EM wave absorption materials are playing an essential role in daily life. Carbon nanostructures stand out for their unique structures and properties compared with the other absorption materials. Graphene, carbon nanotubes, and other special carbon nanostructures have become especially significant as EM wave absorption materials in the high-frequency range. Moreover, various nanocomposites based on carbon nanostructures and other lossy materials can be modified as high-performance absorption materials. Here, the EM wave absorption theories of carbon nanostructures are introduced and recent advances of carbon nanostructures for high-frequency EM wave absorption are summarized. Meanwhile, the shortcomings, challenges, and prospects of carbon nanostructures for high-frequency EM wave absorption are presented. Carbon nanostructures are typical EM wave absorption materials being lightweight and having broadband properties. Carbon nanostructures and related nanocomposites represent the developing orientation of high-performance EM wave absorption materials.

Journal ArticleDOI
TL;DR: The recent progress in the development of multifunctional and self‐healable hydrogels for various tissue engineering applications is discussed in detail and their potential applications within the rapidly expanding areas of bioelectronics, cyborganics, and soft robotics are highlighted.
Abstract: Given their durability and long-term stability, self-healable hydrogels have, in the past few years, emerged as promising replacements for the many brittle hydrogels currently being used in preclinical or clinical trials. To this end, the incompatibility between hydrogel toughness and rapid self-healing remains unaddressed, and therefore most of the self-healable hydrogels still face serious challenges within the dynamic and mechanically demanding environment of human organs/tissues. Furthermore, depending on the target tissue, the self-healing hydrogels must comply with a wide range of properties including electrical, biological, and mechanical. Notably, the incorporation of nanomaterials into double-network hydrogels is showing great promise as a feasible way to generate self-healable hydrogels with the above-mentioned attributes. Here, the recent progress in the development of multifunctional and self-healable hydrogels for various tissue engineering applications is discussed in detail. Their potential applications within the rapidly expanding areas of bioelectronic hydrogels, cyborganics, and soft robotics are further highlighted.

Journal ArticleDOI
TL;DR: In this article, the historical development and current state of data-driven materials science, building from the early evolution of open science to the rapid expansion of materials data frastructures are discussed.
Abstract: Data-driven science is heralded as a new paradigm in materials science. In this field, data is the new resource, and knowledge is extracted from materials datasets that are too big or complex for traditional human reasoning—typically with the intent to discover new or improved materials or materials phenomena. Multiple factors, including the open science movement, national funding, and progress in information technology, have fueled its development. Such related tools as materials databases, machine learning, and high-throughput methods are now established as parts of the materials research toolset. However, there are a variety of challenges that impede progress in data-driven materials science: data veracity, integration of experimental and computational data, data longevity, standardization, and the gap between industrial interests and academic efforts. In this perspective article, the historical development and current state of data-driven materials science, building from the early evolution of open science to the rapid expansion of materials data frastructures are discussed. Key successes and challenges so far are also reviewed, providing a perspective on the future development of the field.

Journal ArticleDOI
TL;DR: Results suggest that the present PdSe2/perovskite Schottky junction photodetectors may be useful for assembly of optoelectronic system applications in near future.
Abstract: Group-10 transition metal dichalcogenides (TMDs) with distinct optical and tunable electrical properties have exhibited great potential for various optoelectronic applications. Herein, a self-powered photodetector is developed with broadband response ranging from deep ultraviolet to near-infrared by combining FA1- x Cs x PbI3 perovskite with PdSe2 layer, a newly discovered TMDs material. Optoelectronic characterization reveals that the as-assembled PdSe2/perovskite Schottky junction is sensitive to light illumination ranging from 200 to 1550 nm, with the highest sensitivity centered at ≈800 nm. The device also shows a large on/off ratio of ≈104, a high responsivity (R) of 313 mA W-1, a decent specific detectivity (D*) of ≈1013 Jones, and a rapid response speed of 3.5/4 µs. These figures of merit are comparable with or much better than most of the previously reported perovskite detectors. In addition, the PdSe2/perovskite device exhibits obvious sensitivity to polarized light, with a polarization sensitivity of 6.04. Finally, the PdSe2/perovskite detector can readily record five "P," "O," "L," "Y," and "U" images sequentially produced by 808 nm. These results suggest that the present PdSe2/perovskite Schottky junction photodetectors may be useful for assembly of optoelectronic system applications in near future.

Journal ArticleDOI
TL;DR: The jammed microgel inks are shear‐thinning to permit flow and rapidly recover upon deposition, including on surfaces or when deposited in 3D within hydrogel supports, and can be further stabilized with secondary cross‐linking.
Abstract: 3D printing involves the development of inks that exhibit the requisite properties for both printing and the intended application. In bioprinting, these inks are often hydrogels with controlled rheological properties that can be stabilized after deposition. Here, an alternate approach is developed where the ink is composed exclusively of jammed microgels, which are designed to incorporate a range of properties through microgel design (e.g., composition, size) and through the mixing of microgels. The jammed microgel inks are shear-thinning to permit flow and rapidly recover upon deposition, including on surfaces or when deposited in 3D within hydrogel supports, and can be further stabilized with secondary cross-linking. This platform allows the use of microgels engineered from various materials (e.g., thiol-ene cross-linked hyaluronic acid (HA), photo-cross-linked poly(ethylene glycol), thermo-sensitive agarose) and that incorporate cells, where the jamming process and printing do not decrease cell viability. The versatility of this particle-based approach opens up numerous potential biomedical applications through the printing of a more diverse set of inks.

Journal ArticleDOI
TL;DR: This work designs a triple‐band absorber using the REACTIVE method, where a deep learning model computes the metasurface structure automatically through inputting the desired absorption rate.
Abstract: Metasurfaces provide unprecedented routes to manipulations on electromagnetic waves, which can realize many exotic functionalities. Despite the rapid development of metasurfaces in recent years, the design process of metasurface is still time-consuming and computational resource-consuming. Moreover, it is quite complicated for layman users to design metasurfaces as plenty of specialized knowledge is required. In this work, a metasurface design method named REACTIVE is proposed on the basis of deep learning, as deep learning method has shown its natural advantages and superiorities in mining undefined rules automatically in many fields. REACTIVE is capable of calculating metasurface structure directly through a given design target; meanwhile, it also shows the advantage in making the design process automatic, more efficient, less time-consuming, and less computational resource-consuming. Besides, it asks for less professional knowledge, so that engineers are required only to pay attention to the design target. Herein, a triple-band absorber is designed using the REACTIVE method, where a deep learning model computes the metasurface structure automatically through inputting the desired absorption rate. The whole design process is achieved 200 times faster than the conventional one, which convincingly demonstrates the superiority of this design method. REACTIVE is an effective design tool for designers, especially for laymen users and engineers.

Journal ArticleDOI
TL;DR: The most recent achievements and trends in metal oxide and hydroxide–based aqueous supercapacitors are discussed and the authors' viewpoints are brought into the spotlight.
Abstract: Energy storage devices that efficiently use energy, in particular renewable energy, are being actively pursued. Aqueous redox supercapacitors, which operate in high ionic conductivity and environmentally friendly aqueous electrolytes, storing and releasing high amounts of charge with rapid response rate and long cycling life, are emerging as a solution for energy storage applications. At the core of these devices, electrode materials and their assembling into rational configurations are the main factors governing the charge storage properties of supercapacitors. Redox-active metal compounds, particularly oxides and hydroxides that store charge via reversible valence change redox reactions with electrolyte ions, are prospective candidates to optimize the electrochemical performance of supercapacitors. To address this target, collaborative investigations, addressing different streams, from fundamental charge storage mechanisms and electrode materials engineering to need-tailored device assemblies, are the key. Over the last few years, significant achievements in metal oxide and hydroxide-based aqueous supercapacitors have been reported. This work discusses the most recent achievements and trends in this field and brings into the spotlight the authors' viewpoints.

Journal ArticleDOI
TL;DR: The construction of a nanocatalytic medicine, CaO2@DOX@ZIF‐67, via a bottom‐up approach, that simultaneously supplies O2 and H2O2 to achieve improved chemo/chemodynamic therapy.
Abstract: Combined chemo/chemodynamic therapy is a promising strategy to achieve an improved anticancer effect. However, the hypoxic microenvironment and limited amount of H2O2 in most solid tumors severely restrict the efficacy of this treatment. Herein, the construction of a nanocatalytic medicine, CaO2@DOX@ZIF-67, via a bottom-up approach is described. CaO2@DOX@ZIF-67 simultaneously supplies O2 and H2O2 to achieve improved chemo/chemodynamic therapy. In the weakly acidic environment within tumors, CaO2@DOX@ZIF-67 is broken down to rapidly release the Fenton-like catalyst Co2+ and the chemotherapy drug doxorubicin (DOX). The unprotected CaO2 reacts with H2O to generate both O2 and H2O2. The generated O2 relieves the hypoxia in the tumor and further improve the efficacy of DOX. Meanwhile, the generated H2O2 reacts with Co2+ ions to produce highly toxic •OH through a Fenton-like reaction, resulting in improved chemodynamic therapy.

Journal ArticleDOI
TL;DR: An exosome‐guided cell reprogramming technique is proposed to directly convert M1 to M2 Mϕs for effective wound management and accelerates wound healing by enhancing angiogenesis, re‐epithelialization, and collagen deposition.
Abstract: Macrophages (Mϕs) critically contribute to wound healing by coordinating inflammatory, proliferative, and angiogenic processes. A proper switch from proinflammatory M1 to anti-inflammatory M2 dominant Mϕs accelerates the wound healing processes leading to favorable wound-care outcomes. Herein, an exosome-guided cell reprogramming technique is proposed to directly convert M1 to M2 Mϕs for effective wound management. The M2 Mϕ-derived exosomes (M2-Exo) induce a complete conversion of M1 to M2 Mϕs in vitro. The reprogrammed M2 Mϕs turn Arginase (M2-marker) and iNOS (M1-marker) on and off, respectively, and exhibit distinct phenotypic and functional features of M2 Mϕs. M2-Exo has not only Mϕ reprogramming factors but also various cytokines and growth factors promoting wound repair. After subcutaneous administration of M2-Exo into the wound edge, the local populations of M1 and M2 Mϕs are markedly decreased and increased, respectively, showing a successful exosome-guided switch to M2 Mϕ polarization. The direct conversion of M1 to M2 Mϕs at the wound site accelerates wound healing by enhancing angiogenesis, re-epithelialization, and collagen deposition. The Mϕ phenotype switching induced by exosomes possessing the excellent cell reprogramming capability and innate biocompatibility can be a promising therapeutic approach for various inflammation-associated disorders by regulating the balance between pro- versus anti-inflammatory Mϕs.

Journal ArticleDOI
TL;DR: The demonstrated combination of an all‐solution‐based MXene/BC composite paper‐making method and an easily manipulated laser‐cutting kirigami patterning technique enables the fabrication of MXene‐based deformable all‐solid‐state planar MSCAs, making them promising micropower sources that are compatible with flexible/wearable microelectronics.
Abstract: Stretchable micropower sources with high energy density and stability under repeated tensile deformation are key components of flexible/wearable microelectronics. Herein, through the combination of strain engineering and modulation of the interlayer spacing, freestanding and lightweight MXene/bacterial cellulose (BC) composite papers with excellent mechanical stability and a high electrochemical performance are first designed and prepared via a facile all-solution-based paper-making process. Following a simple laser-cutting kirigami patterning process, bendable, twistable, and stretchable all-solid-state micro-supercapacitor arrays (MSCAs) are further fabricated. As expected, benefiting from the high-performance MXene/BC composite electrodes and rational sectional structural design, the resulting kirigami MSCAs exhibit a high areal capacitance of 111.5 mF cm-2, and are stable upon stretching of up to 100% elongation, and in bent or twisted states. The demonstrated combination of an all-solution-based MXene/BC composite paper-making method and an easily manipulated laser-cutting kirigami patterning technique enables the fabrication of MXene-based deformable all-solid-state planar MSCAs in a simple and efficient manner while achieving excellent areal performance metrics and high stretchability, making them promising micropower sources that are compatible with flexible/wearable microelectronics.

Journal ArticleDOI
TL;DR: Theoretical calculations prove that the new electron excitation from N to B is much easier than N to C 2pz, and improves the charge transfer and localization, and thus the reaction dynamics, and the optimal sample of 1%B/g‐C3N4 exhibits better selectivity for CH4 with ≈32 times higher yield than that of pure g‐C 3N4.
Abstract: The photoreduction of CO2 to hydrocarbon products has attracted much attention because it provides an avenue to directly synthesize value-added carbon-based fuels and feedstocks using solar energy. Among various photocatalysts, graphitic carbon nitride (g-C3N4) has emerged as an attractive metal-free visible-light photocatalyst due to its advantages of earth-abundance, nontoxicity, and stability. Unfortunately, its photocatalytic efficiency is seriously limited by charge carriers' ready recombination and their low reaction dynamics. Modifying the local electronic structure of g-C3N4 is predicted to be an efficient way to improve the charge transfer and reaction efficiency. Here, boron (B) is doped into the large cavity between adjacent tri-s-triazine units via coordination with two-coordinated N atoms. Theoretical calculations prove that the new electron excitation from N (2p x , 2p y ) to B (2p x , 2p y ) with the same orbital direction in B-doped g-C3N4 is much easier than N (2p x , 2p y ) to C 2p z in pure g-C3N4, and improves the charge transfer and localization, and thus the reaction dynamics. Moreover, B atoms doping changes the adsorption of CO (intermediate), and can act as active sites for CH4 production. As a result, the optimal sample of 1%B/g-C3N4 exhibits better selectivity for CH4 with ≈32 times higher yield than that of pure g-C3N4.

Journal ArticleDOI
TL;DR: The first single waterproof and fabric‐based multifunctional triboelectric nanogenerator (WPF‐MTENG) is presented, which can produce electricity from both natural tiny impacts (rain and wind) and body movements, and can not only serve as a flexible, adaptive, wearable, and universal energy collector but also act as a self‐powered, active, fabric‐ based sensor.
Abstract: Developing nimble, shape-adaptable, conformable, and widely implementable energy harvesters with the capability to scavenge multiple renewable and ambient energy sources is highly demanded for distributed, remote, and wearable energy uses to meet the needs of internet of things. Here, the first single waterproof and fabric-based multifunctional triboelectric nanogenerator (WPF-MTENG) is presented, which can produce electricity from both natural tiny impacts (rain and wind) and body movements, and can not only serve as a flexible, adaptive, wearable, and universal energy collector but also act as a self-powered, active, fabric-based sensor. The working principle comes from a conjunction of contact triboelectrification and electrostatic induction during contact/separation of internal soft fabrics. The structural/material designs of the WPF-MTENG are systematically studied to optimize its performance, and its outputs under different conditions of rain, wind, and various body movements are comprehensively investigated. Its applicability is practically demonstrated in various objects and working situations to gather ambient energy. Lastly, a WPF-MTENG-based keypad as self-powered human-system interfaces is demonstrated on a garment for remotely controlling a music-player system. This multifunctional WPF-MTENG, which is as flexible as clothes, not only presents a promising step toward democratic collections of alternative energy but also provides a new vision for wearable technologies.

Journal ArticleDOI
TL;DR: The cutting‐edge research progress in 2D/2D heterojunctions and heterostructures is highlighted with a specific emphasis on synthetic strategies, reaction mechanism, and applications in catalysis (photocatalysis, electrocatalysis, and organic synthesis).
Abstract: 2D layered materials with atomic thickness have attracted extensive research interest due to their unique physicochemical and electronic properties, which are usually very different from those of their bulk counterparts. Heterojunctions or heterostructures based on ultrathin 2D materials have attracted increasing attention due to the integrated merits of 2D ultrathin components and the heterojunction effect on the separation and transfer of charges, resulting in important potential values for catalytic applications. Furthermore, 2D/2D heterostructures with face-to-face contact are believed to be a preferable dimensionality design due to their large interface area, which would contribute to enhanced heterojunction effect. Here, the cutting-edge research progress in 2D/2D heterojunctions and heterostructures is highlighted with a specific emphasis on synthetic strategies, reaction mechanism, and applications in catalysis (photocatalysis, electrocatalysis, and organic synthesis). Finally, the key issues and development perspectives in the applications of 2D/2D layered heterojunctions and heterostructures in catalysis are also discussed.

Journal ArticleDOI
TL;DR: A biocompatible phototherapeutic system is developed composed of MoS2, IR780 photosensitizer, and arginine–glycine–aspartic acid–cysteine (RGDC) to safely eradicate biofilms on titanium implants within 20 min.
Abstract: Biofilms have been related to the persistence of infections on medical implants, and these cannot be eradicated because of the resistance of biofilm structures. Therefore, a biocompatible phototherapeutic system is developed composed of MoS2, IR780 photosensitizer, and arginine-glycine-aspartic acid-cysteine (RGDC) to safely eradicate biofilms on titanium implants within 20 min. The magnetron-sputtered MoS2 film possesses excellent photothermal properties, and IR780 can produce reactive oxygen species (ROS) with the irradiation of near-infrared (NIR, λ = 700-1100 nm) light. Consequently, the combination of photothermal therapy (PTT) and photodynamic therapy (PDT), assisted by glutathione oxidation accelerated by NIR light, can provide synergistic and rapid killing of bacteria, i.e., 98.99 ± 0.42% eradication ratio against a Staphylococcus aureus biofilm in vivo within 20 min, which is much greater than that of PTT or PDT alone. With the assistance of ROS, the permeability of damaged bacterial membranes increases, and the damaged bacterial membranes become more sensitive to heat, thus accelerating the leakage of proteins from the bacteria. In addition, RGDC can provide excellent biosafety and osteoconductivity, which is confirmed by in vivo animal experiments.

Journal ArticleDOI
TL;DR: The potent antitumor effect of the LaCIONPs is demonstrated by both in vitro and in vivo results, and is a promising nanomedicine for tumor‐specific chemo/chemodynamic combination therapy.
Abstract: The combination of chemotherapeutic drugs and reactive oxygen species (ROS) is a promising strategy to achieve improved anticancer effect. Herein, a nanomedicine (LaCIONPs) that can achieve tumor-specific chemotherapeutic drug release and ROS generation is developed for cancer chemo/chemodynamic combination therapy. The LaCIONPs are constructed by encapsulation of iron oxide nanoparticles (IONPs) and β-lapachone (La) in nanostructure assembled by hydrogen peroxide (H2O2)-responsive polyprodrug and pH-responsive polymer. Through the enhanced permeability and retention effect, the nanosized LaCIONPs can accumulate in tumor tissue. After the LaCIONPs are internalized by tumor cells, the structure of LaCIONPs is disintegrated in acidic intracellular environment, leading to rapid release of La and iron ions. Then the released La generates massive H2O2 through tumor specific catalysis. On the one hand, H2O2 further reacts with iron ions to produce highly toxic hydroxyl radicals for chemodynamic therapy. On the other hand, H2O2 also activates the release of camptothecin from the polyprodrug for chemotherapy. The potent antitumor effect of the LaCIONPs is demonstrated by both in vitro and in vivo results. Therefore, the LaCIONP is a promising nanomedicine for tumor-specific chemo/chemodynamic combination therapy.

Journal ArticleDOI
TL;DR: The synergized photothermal, photodynamic, and immunological effects using light‐activated UCNP/ICG/RB‐mal induces a tumor‐specific immune response and provides a promising approach for the treatment of metastatic cancers.
Abstract: Combined phototherapy and immunotherapy demonstrates strong potential in the treatment of metastatic cancers. An upconversion nanoparticle (UCNP) based antigen-capturing nanoplatform is designed to synergize phototherapies and immunotherapy. In particular, this nanoplatform is constructed via self-assembly of DSPE-PEG-maleimide and indocyanine green (ICG) onto UCNPs, followed by loading of the photosensitizer rose bengal (RB). ICG significantly enhances the RB-based photodynamic therapy efficiency of UCNP/ICG/RB-mal upon activation by a near-infrared (NIR) laser, simultaneously achieving selective photothermal therapy. Most importantly, tumor-derived protein antigens, arising from phototherapy-treated tumor cells, can be captured and retained in situ, due to the functionality of maleimide, which further enhance the tumor antigen uptake and presentation by antigen-presenting cells. The synergized photothermal, photodynamic, and immunological effects using light-activated UCNP/ICG/RB-mal induces a tumor-specific immune response. In the experiments, intratumoral administration of UCNP/ICG/RB-mal, followed by noninvasive irradiation with an NIR laser, destroys primary tumors and inhibits untreated distant tumors, using a poorly immunogenic, highly metastatic 4T1 mammary tumor model. With the simultaneous use of anti-CTLA-4, about 84% of the treated tumor-bearing mice achieve long-term survival and 34% of mice develop tumor-specific immunity. Overall, this antigen-capturing nanoplatform provides a promising approach for the treatment of metastatic cancers.

Journal ArticleDOI
TL;DR: A facile self‐templated synthetic strategy is developed for the fabrication of hierarchical Co–Fe oxyphosphide microtubes (MTs) using Fe‐based metal–organic compound microrods as the self‐sacrificing template.
Abstract: Development of efficient electrocatalysts is a crucial requirement to build water splitting systems for the production of clean and sustainable fuels. This goal could be achieved by fine-tuning the composition and structure of the electrocatalytic materials. Here, a facile self-templated synthetic strategy is developed for the fabrication of hierarchical Co-Fe oxyphosphide microtubes (MTs). Fe-based metal-organic compound microrods are first synthesized as the self-sacrificing template. Afterward, the Fe-based precursors are converted into hierarchical Co-Fe layered double hydroxide MTs through a hydrothermal approach, which are then transformed into the hierarchical Co-Fe oxyphosphide MTs by a phosphidation treatment. Benefiting from the synergistic effect of the compositions and the advantages of the hierarchical hollow structure, the obtained electrocatalyst exhibits enhanced performance for overall water splitting.

Journal ArticleDOI
Yong-Chao Zhang1, Nisha Afzal1, Lun Pan1, Xiangwen Zhang1, Ji-Jun Zou1 
TL;DR: This work comprehensively reviews point defective metal‐based photocatalysts for water splitting, focusing on understanding the defects' disorder effect on optical adsorption, charge separation and migration, and surface reaction.
Abstract: Photocatalytic water splitting is promising for hydrogen energy production using solar energy and developing highly efficient photocatalysts is challenging. Defect engineering is proved to be a very useful strategy to promote the photocatalytic performance of metal-based photocatalysts, however, the vital role of defects is still ambiguous. This work comprehensively reviews point defective metal-based photocatalysts for water splitting, focusing on understanding the defects' disorder effect on optical adsorption, charge separation and migration, and surface reaction. The controllable synthesis and tuning strategies of defective structure to improve the photocatalytic performance are summarized, then the characterization techniques and density functional theory calculations are discussed to unveil the defect structure, and analyze the defects induced electronic structure change of catalysts and its ultimate effect on the photocatalytic activity at the molecular level. Finally, the challenge in developing more efficient defective metal-based photocatalysts is outlined. This work may help further the understanding of the fundamental role of defect structure in the photocatalytic reaction process and guide the rational design and fabrication of highly efficient and low-cost photocatalysts.

Journal ArticleDOI
TL;DR: In vitro biological experiments demonstrate that the biohybrid gradient hydrogel scaffold not only supports cell attachment and spreading but also enhances gene expression of chondrogenic‐related and osteogenic‐related differentiation of human bone marrow stem cells.
Abstract: Biomacromolecules with poor mechanical properties cannot satisfy the stringent requirement for load-bearing as bioscaffolds. Herein, a biodegradable high-strength supramolecular polymer strengthened hydrogel composed of cleavable poly(N-acryloyl 2-glycine) (PACG) and methacrylated gelatin (GelMA) (PACG-GelMA) is successfully constructed by photo-initiated polymerization. Introducing hydrogen bond-strengthened PACG contributes to a significant increase in the mechanical strengths of gelatin hydrogel with a high tensile strength (up to 1.1 MPa), outstanding compressive strength (up to 12.4 MPa), large Young's modulus (up to 320 kPa), and high compression modulus (up to 837 kPa). In turn, the GelMA chemical crosslinking could stabilize the temporary PACG network, showing tunable biodegradability by adjusting ACG/GelMA ratios. Further, a biohybrid gradient scaffold consisting of top layer of PACG-GelMA hydrogel-Mn2+ and bottom layer of PACG-GelMA hydrogel-bioactive glass is fabricated for repair of osteochondral defects by a 3D printing technique. In vitro biological experiments demonstrate that the biohybrid gradient hydrogel scaffold not only supports cell attachment and spreading but also enhances gene expression of chondrogenic-related and osteogenic-related differentiation of human bone marrow stem cells. Around 12 weeks after in vivo implantation, the biohybrid gradient hydrogel scaffold significantly facilitates concurrent regeneration of cartilage and subchondral bone in a rat model.