Showing papers in "Advances in Colloid and Interface Science in 2009"
TL;DR: This review presents an overview of silver nanoparticles (Ag NPs) preparation by green synthesis approaches that have advantages over conventional methods involving chemical agents associated with environmental toxicity.
Abstract: This review presents an overview of silver nanoparticles (Ag NPs) preparation by green synthesis approaches that have advantages over conventional methods involving chemical agents associated with environmental toxicity. Green synthetic methods include mixed-valence polyoxometallates, polysaccharide, Tollens, irradiation, and biological. The mixed-valence polyoxometallates method was carried out in water, an environmentally-friendly solvent. Solutions of AgNO(3) containing glucose and starch in water gave starch-protected Ag NPs, which could be integrated into medical applications. Tollens process involves the reduction of Ag(NH(3))(2)(+) by saccharides forming Ag NP films with particle sizes from 50-200 nm, Ag hydrosols with particles in the order of 20-50 nm, and Ag colloid particles of different shapes. The reduction of Ag(NH(3))(2)(+) by HTAB (n-hexadecyltrimethylammonium bromide) gave Ag NPs of different morphologies: cubes, triangles, wires, and aligned wires. Ag NPs synthesis by irradiation of Ag(+) ions does not involve a reducing agent and is an appealing procedure. Eco-friendly bio-organisms in plant extracts contain proteins, which act as both reducing and capping agents forming stable and shape-controlled Ag NPs. The synthetic procedures of polymer-Ag and TiO(2)-Ag NPs are also given. Both Ag NPs and Ag NPs modified by surfactants or polymers showed high antimicrobial activity against gram-positive and gram-negative bacteria. The mechanism of the Ag NP bactericidal activity is discussed in terms of Ag NP interaction with the cell membranes of bacteria. Silver-containing filters are shown to have antibacterial properties in water and air purification. Finally, human and environmental implications of Ag NPs to the ecology of aquatic environment are briefly discussed.
3,290 citations
TL;DR: A general picture of bitumen structure is shown to emerge and it shows that a simple solvation parameter allows quantifying the effect of the asphaltenes on the rheological properties ofbitumen.
Abstract: The use of bitumen as a construction material dates back to antiquity. The materials in use then were mostly naturally occurring in contrast to modern bitumens which have become highly technical artificial materials. This article reviews the current understanding of bitumen structure and the consequences in terms of properties, with a strong emphasis on the rheological properties. The links between chemistry, structure and mechanical properties are highlighted in the framework of an updated colloidal picture of bitumen. It shows that a simple solvation parameter allows quantifying the effect of the asphaltenes on the rheological properties of bitumen. This appears as a promising approach in order to understand more complex phenomena such as bitumen ageing or the diffusion of rejuvenating oils into an older bitumen. From this structural modelling, the effect of several modifiers, such as polymers, acids or mineral fillers, is explained using fundamental results from the mechanics of colloidal suspensions and multiphase materials through the Palierne model. Thus, relevant parameters describing polymer-bitumen or mineral fillers-bitumen interactions can be extracted, as detailed from literature data. In the case of mineral filler, volume fraction is the key parameter but particle size comes also into play when fine fillers are considered. In the case of polymer-modified bitumens, the swelling extent of the polymer controls all other parameters of importance: volume fraction of dispersed phase and mechanical properties of both dispersed and continuous phases. In addition, interesting rheological features due to droplet shape relaxations are described in polymer-modified bitumens. Although a general picture of bitumen structure is shown to emerge, the many fundamental points that remain to be addressed are discussed throughout the paper.
1,236 citations
TL;DR: In this paper, it was shown that the "compact layer" and "shear plane" effectively advance into the liquid, due to the crowding of counterions, and that ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance; each trend is enhanced by dielectric saturation.
Abstract: The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e approximately 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V approximately 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the "compact layer" and "shear plane" effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.
800 citations
TL;DR: A review of a certain class of theoretical models describing the kinetics of pollutants sorption onto various sorbents assuming the rate of surface reaction as the rate-limiting step are considered.
Abstract: A review of a certain class of theoretical models describing the kinetics of pollutants sorption onto various sorbents is presented. These assuming the rate of surface reaction as the rate-limiting step are considered. A special attention is paid to possible theoretical grounds of the most commonly applied mathematical expressions, such as the pseudo-second and the pseudo-first order equations. Simple theoretical considerations based on some fundamental theories suggest that these two formulae do not correspond to any specific physical model. They simply approximate well the behaviours predicted by many different theoretical approaches.
711 citations
TL;DR: The presented characterization of the interfacial composition and its consequences provide a new approach for the understanding of lipase reactions at interfaces with direct impact on biotechnological and health care applications.
Abstract: Lipases are acyl hydrolases that play a key role in fat digestion by cleaving long-chain triglycerides into polar lipids Due to an opposite polarity between the enzyme (hydrophilic) and their substrates (lipophilic), lipase reaction occurs at the interface between the aqueous and the oil phases Hence, interfaces are the key spots for lipase biocatalysis and an appropriate site for modulating lipolysis Surprisingly enough, knowledge about the effects of the interfacial composition on lipase catalysis is still limited and only described by the term "interfacial quality" Recent systematic studies based on a biophysical approach allowed for the first time to show the effects of the interfacial microenvironment on lipase catalysis These studies demonstrate that lipase activity as a function of interfacial composition is more attributed to substrate inaccessibility rather than to enzyme denaturation or inactivation, as it is often hypothesized A detailed analysis of the interfacial properties of all compounds involved in triglyceride digestion revealed that lipolysis is a self-regulated reaction This feedback mechanism can be explored as a new avenue to control lipase catalysis To substantiate this hypothesis, oil hydrolysis in a model gastro-intestinal system was performed, which can be seen as an interfacial engineering approach to enzyme reactivity control The presented characterization of the interfacial composition and its consequences provide a new approach for the understanding of lipase reactions at interfaces with direct impact on biotechnological and health care applications
646 citations
TL;DR: An overview of the principal results obtained during the treatment of water and wastewater utilizing chitin and chitosan-derivatives for the removal of metal cations and metal anions and other miscellaneous pollutants is given.
Abstract: Chitin and chitosan-derivatives have gained wide attention as effective biosorbents due to low cost and high contents of amino and hydroxyl functional groups which show significant adsorption potential for the removal of various aquatic pollutants. In this review, an extensive list of chitin- and chitosan-derivatives from vast literature has been compiled and their adsorption capacities for various aquatic pollutants as available in the literature are presented. This paper will give an overview of the principal results obtained during the treatment of water and wastewater utilizing chitin and chitosan-derivatives for the removal of: (a) metal cations and metal anions; (b) radionuclides; (c) different classes of dyes; (d) phenol and substituted phenols; (e) different anions and other miscellaneous pollutants. The review provides a summary of recent information obtained using batch studies and deals with the various adsorption mechanisms involved. It is evident from the literature survey that chitin- and chitosan-derivatives have shown good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of such developed adsorbents on commercial scale.
614 citations
TL;DR: Normal capillary forces are reviewed, focusing on a quantitative description with continuum theory, and the process of meniscus formation is described, including the influence of surface roughness.
Abstract: A liquid meniscus between two lyophilic solid surfaces causes an attractive force, the capillary force. The meniscus can form by capillary condensation or by accumulation of adsorbed liquid. Under ambient conditions and between hydrophilic surfaces, capillary forces usually dominate over other surface forces. They are relevant in many processes occurring in nature and technical applications, for example the flow of granular materials and friction between surfaces. Here we review normal capillary forces, focusing on a quantitative description with continuum theory. After introducing the capillary force between spherical surfaces, we extend the discussion to other regular and irregular surfaces. The influence of surface roughness is considered. In addition to capillary forces at equilibrium, we also describe the process of meniscus formation. Assumptions, limits, and perspectives for future work are discussed.
508 citations
TL;DR: This manuscript provides an overview of recent developments and published literature in membrane technology, focusing on special characteristics of the membranes and membrane-based processes that are now used for the production and purification of proteins.
Abstract: Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as microfiltration, ultrafiltration, emerging processes as membrane chromatography, high performance tangential flow filtration and electrophoretic membrane contactor. Membrane-based processes are playing critical role in the field of separation/purification of biotechnological products. Membranes became an integral part of biotechnology and improvements in membrane technology are now focused on high resolution of bioproduct. In bioseparation, applications of membrane technologies include protein production/purification, protein-virus separation. This manuscript provides an overview of recent developments and published literature in membrane technology, focusing on special characteristics of the membranes and membrane-based processes that are now used for the production and purification of proteins.
461 citations
TL;DR: There is a lack of a rigid quantitative correlation between factors affecting wetting, wetting behaviour and contact angle on minerals; and hence their implication for flotation process; and universal correlation of contact angle to flotation recovery is still difficult to predict from first principles.
Abstract: Contact angle and the wetting behaviour of solid particles are influenced by many physical and chemical factors such as surface roughness and heterogeneity as well as particle shape and size. A significant amount of effort has been invested in order to probe the correlation between these factors and surface wettability. Some of the key investigations reported in the literature are reviewed here. It is clear from the papers reviewed that, depending on many experimental conditions such as the size of the surface heterogeneities and asperities, surface cleanliness, and the resolution of measuring equipment and data interpretation, obtaining meaningful contact angle values is extremely difficult and such values are reliant on careful experimental control. Surface wetting behaviour depends on not only surface texture (roughness and particle shape), and surface chemistry (heterogeneity) but also on hydrodynamic conditions in the preparation route. The inability to distinguish the effects of each factor may be due to the interplay and/or overlap of two or more factors in each system. From this review, it was concluded that: Surface geometry (and surface roughness of different scales) can be used to tune the contact angle; with increasing surface roughness the apparent contact angle decreases for hydrophilic materials and increases for hydrophobic materials. For non-ideal surfaces, such as mineral surfaces in the flotation process, kinetics plays a more important role than thermodynamics in dictating wettability. Particle size encountered in flotation (10-200 microm) showed no significant effect on contact angle but has a strong effect on flotation rate constant. There is a lack of a rigid quantitative correlation between factors affecting wetting, wetting behaviour and contact angle on minerals; and hence their implication for flotation process. Specifically, universal correlation of contact angle to flotation recovery is still difficult to predict from first principles. Other advanced techniques and measures complementary to contact angle will be essential to establish the link between research and practice in flotation.
427 citations
TL;DR: Taking the average or median of all published PZC and IEP for certain oxide as the "recommended" value leads to substantiation of previously published results due to overrepresentation of certain specimens in the sample.
Abstract: The values of PZC and IEP of metal oxides reported in the literature are affected by the choice of the specimens to be studied. The specimens, which have PZC and IEP similar to the "recommended" value, are preferred by the scientists. The biased choice leads to accumulation of results for a few specimens, and the other specimens are seldom studied or they are subjected to washing procedures aimed at shift of the original IEP toward the "recommended" value. Taking the average or median of all published PZC and IEP for certain oxide as the "recommended" value leads to substantiation of previously published results due to overrepresentation of certain specimens in the sample.
400 citations
TL;DR: A Hofmeister-like ordering of charged headgroups is proposed and some new experimental and computational results on interactions of ions with alkyl sulfates and carboxylates are presented.
Abstract: In this paper, we propose a Hofmeister-like ordering of charged headgroups. To this purpose we review various literature data and complete them with some new experimental and computational results on interactions of ions with alkyl sulfates and carboxylates. We further combine the proposed headgroup ordering with the law of matching water affinities in order to obtain a general description and predictions of ion-headgroup interactions. Examples from colloidal chemistry and from biological systems are provided to illustrate the power of this approach.
TL;DR: The review is devoted to the historical and modern understanding of rheological properties of emulsions in a broad range of concentration, with special attention to the problem of shear stability of drops of an internal phase starting from the theory of the single drop behaviour.
Abstract: The review is devoted to the historical and modern understanding of rheological properties of emulsions in a broad range of concentration. In the limiting case of dilute emulsions, the discussion is based on the analogy and differences in properties of suspensions and emulsions. For concentrated emulsions, the main peculiarities of their rheological behaviour are considered. Different approaches to understand the concentration dependencies of viscosity are presented and compared. The effects of non-Newtonian flow curves and the apparent transition to yielding with increasing concentration of the dispersed phase are discussed. The problem of droplet deformation in shear fields is touched. The highly concentrated emulsions (beyond the limit of closest packing of spherical particles) are treated as visco-plastic media, and the principle features of their rheology (elasticity, yielding, concentration and droplet size dependencies) are considered. A special attention is paid to the problem of shear stability of drops of an internal phase starting from the theory of the single drop behaviour, including approaches for the estimation of drops' stability in concentrated emulsions. Polymer blends are also treated as emulsions, though taking into account their peculiarities due to the coexistence of two interpenetrated phases. Different theoretical models of deformation of polymer drops were discussed bearing in mind the central goal of predictions of the visco-elastic properties of emulsions as functions of the properties of individual components and the interfacial layer. The role of surfactants is discussed from the point of view of stability of emulsions in time and their special influence on the rheology of emulsions.
TL;DR: Conclusively, microwave energy is predicted to be a potentially viable and powerful replacement for fuel technology in various areas, while its progress represents an expanding field in the area of adsorption science.
Abstract: To date, microwave energy has been widely developed and applied to almost every field of chemistry. In many cases, microwave technology has proven to remarkably reducing costs, accelerating reaction rates, improving yields and selectively activating. This paper presents a state of art review of microwave technology, its background studies, fundamental chemistry and industrial applications. With the renaissance of activated carbon, there has been a steadily growing interest in this research field. The review provides a summary on recent development in preparation and regeneration of activated carbons. The key advance of introducing microwave energy has been highlighted relative to conventional methods. Moreover, the major drawbacks, challenges with its future expectation are presented and discussed. Conclusively, microwave energy is predicted to be a potentially viable and powerful replacement for fuel technology in various areas, while its progress represents an expanding field in the area of adsorption science.
TL;DR: This review presents an overview of the literature on the co-assembly of neutral-ionic block, graft, and random copolymers with oppositely charged species in aqueous solution and highlights recent developments in applications and micelles with heterogeneous coronas.
Abstract: In this review we present an overview of the literature on the co-assembly of neutral-ionic block, graft, and random copolymers with oppositely charged species in aqueous solution. Oppositely charged species include synthetic (co)polymers of various architectures, biopolymers - such as proteins, enzymes and DNA - multivalent ions, metallic nanoparticles, low molecular weight surfactants, polyelectrolyte block copolymer micelles, metallo-supramolecular polymers, equilibrium polymers, etcetera. The resultant structures are termed complex coacervate core/polyion complex/block ionomer complex/interpolyelectrolyte complex micelles (or vesicles); i.e., in short C3Ms (or C3Vs) and PIC, BIC or IPEC micelles (and vesicles). Formation, structure, dynamics, properties, and function will be discussed. We focus on experimental work; theory and modelling will not be discussed. Recent developments in applications and micelles with heterogeneous coronas are emphasized.
TL;DR: The present article highlights recent advances and current status in the characterization and the utilization of nanostructured aqueous dispersions in which the submicron-sized dispersed particles envelope a distinctive well-defined self-assembled interior.
Abstract: The present article highlights recent advances and current status in the characterization and the utilization of nanostructured aqueous dispersions in which the submicron-sized dispersed particles envelope a distinctive well-defined self-assembled interior The scope of this review covers dispersions of both inverted-type liquid-crystalline particles (cubosomes, hexosomes, micellar cubosomes, and sponge phases), and microemulsion droplets (emulsified microemulsions, EMEs) Recent investigations that have attempted to shed light on the characterization and the control of confined nanostructures of aqueous dispersions are surveyed, as these nanoobjects are attractive for various pharmaceutical and food applications The focus has been placed on three main subjects: (1) our findings on the formation of EMEs and the modulation of the internal nanostructure, exploring how variations in temperature, oil content, and lipid composition significantly affect the confined nanostructures; (2) recent developments in the field of electron microscopy: using the tilt-angle cryo-TEM method or cryo-field emission scanning electron microscopy (cryo-FESEM) for observing the three dimensional (3D) morphology of non-lamellar liquid-crystalline nanostructured particles (cubosome and hexosome particles); and (3) recent studies on the utilization of nanostructured dispersions as drug nanocarriers
TL;DR: This discussion reviews the properties of microgel particles and the current understanding of their structure, and discusses relationships between microgel structure and dispersion stability.
Abstract: Microgels are network polymer colloid particles that can swell in a good solvent or as a result of electrostatic repulsion between charged groups produced by pH-triggered neutralisation. They have attracted considerable interest as both model colloids and for their potential applications. This discussion reviews the properties of microgel particles and the current understanding of their structure. The review concentrates on the period after an earlier microgel review by Saunders and Vincent [Adv. Coll. Interf. Sci., 1999, 80, 1]. A key challenge for microgel research has involved elucidation of the internal particle structure. Most microgels prepared by emulsion or precipitation polymerisation have a core-shell structure. The segment density is usually highest in the core. Here, we discuss relationships between microgel structure and dispersion stability. The reasons for the exceptional stability of microgel dispersions are considered. There are a number of favourable structural features that make microgels candidates for biomaterial applications and these are discussed. The main potential biomaterial applications that have been investigated for microgels to date are drug delivery and regenerative medicine. Poly(NIPAM) (N-isopropylacrylamide) microgels have been extensively studied in the context of drug delivery. Regenerative medicine research for microgels is an emerging area. Recent work involving the use of gelled microgel dispersions to support biomechanically meaningful loads is considered. We conclude with a discussion of promising directions for microgel research as biomaterials.
TL;DR: Sphalerite and pyrite surfaces are characterised by varying amounts of steps and defects, and this heterogeneity suggests co-existence of more than one copper-sulfide structure after activation.
Abstract: A review of the considerable, but often contradictory, literature examining the specific surface reactions associated with copper adsorption onto the common metal sulfide minerals sphalerite, (Zn,Fe)S, and pyrite (FeS(2)), and the effect of the co-location of the two minerals is presented. Copper "activation", involving the surface adsorption of copper species from solution onto mineral surfaces to activate the surface for hydrophobic collector attachment, is an important step in the flotation and separation of minerals in an ore. Due to the complexity of metal sulfide mineral containing systems this activation process and the emergence of activation products on the mineral surfaces are not fully understood for most sulfide minerals even after decades of research. Factors such as copper concentration, activation time, pH, surface charge, extent of pre-oxidation, water and surface contaminants, pulp potential and galvanic interactions are important factors affecting copper activation of sphalerite and pyrite. A high pH, the correct reagent concentration and activation time and a short time delay between reagent additions is favourable for separation of sphalerite from pyrite. Sufficient oxidation potential is also needed (through O(2) conditioning) to maintain effective galvanic interactions between sphalerite and pyrite. This ensures pyrite is sufficiently depressed while sphalerite floats. Good water quality with low concentrations of contaminant ions, such as Pb(2+)and Fe(2+), is also needed to limit inadvertent activation and flotation of pyrite into zinc concentrates. Selectivity can further be increased and reagent use minimised by opting for inert grinding and by carefully choosing selective pyrite depressants such as sulfoxy or cyanide reagents. Studies that approximate plant conditions are essential for the development of better separation techniques and methodologies. Improved experimental approaches and surface sensitive techniques with high spatial resolution are needed to precisely verify surface structures formed after copper activation. Sphalerite and pyrite surfaces are characterised by varying amounts of steps and defects, and this heterogeneity suggests co-existence of more than one copper-sulfide structure after activation.
TL;DR: A review of past and present published works examining the interaction of polymeric dispersants with titania pigment particles is presented, finding that broad knowledge of the interaction occurring between pigment and dispersants and effect of dispersant structure upon adsorption is needed.
Abstract: A review of past and present published works examining the interaction of polymeric dispersants with titania pigment particles is presented. Titania is the most important white pigments currently used in the world and its suspension properties are very important for consumer industries such as paints, papermaking and plastics; if aggregates are present, the end-use properties including gloss, opacity and storage stability will be highly affected. As polymeric dispersants are generally used to disperse titania pigment particles, it is very important to understand the interactions between the pigment particles and polymeric dispersants of varying functionality. Although, in principle, the adsorption of polymers onto titania pigment and influences on pigment dispersion and stabilisation are fairly known, it is nevertheless hardly possible to forecast the behaviour of a given polymeric dispersant in advance, unless to have a broad knowledge of the interaction occurring between pigment and dispersants and effect of dispersant structure upon adsorption. While only titania pigment is discussed, the issues raised may also apply to other mineral oxides such as alumina or zirconia.
TL;DR: The smart core/shell nanocomposites of intelligent polymers and gold nanoparticles were reviewed from the preparation, properties to potential applications and the stimuli-responsive property and potential uses were sorted to thermosensitive, pH responsive and other responsive catalogues.
Abstract: Recently, the polymer modified gold nanoparticles have showed much potential in advanced materials. In this paper, the smart core/shell nanocomposites of intelligent polymers and gold nanoparticles were reviewed from the preparation, properties to potential applications. The main preparative methods were detailed including the direct-synthesis method, "graft-to" strategy, "graft-from" strategy and physical adsorption method, in which the surface-initiated radical polymerization such as atom-transfer radical polymerization and reversible-addition fragmentation chain-transfer radical polymerization displayed several advantages for well-defined nanostructures. The stimuli-responsive property and potential uses of such-fabricated nanocomposites were sorted to thermosensitive, pH responsive and other responsive catalogues to describe more clarified. In application, the combination of gold nanoparticles and intelligent polymers provides a facile path for intelligent materials and might be encouraged to hold enormous chances in biotechnology and nanotechnology.
TL;DR: A wide range of test methods for monitoring particle aggregation processes is reviewed, including techniques for measuring aggregation rates in fundamental studies and those which are useful in the monitoring and control of practical coagulation/flocculation processes.
Abstract: A wide range of test methods for monitoring particle aggregation processes is reviewed. These include techniques for measuring aggregation rates in fundamental studies and those which are useful in the monitoring and control of practical coagulation/flocculation processes. Most emphasis is on optical methods, including light transmission (turbidity) and light scattering measurements and the fundamentals of these phenomena are briefly introduced. It is shown that in some cases, absolute aggregation rates can be derived. However, even when only relative rates can be obtained, these can still be very useful, for instance in defining optimum flocculation conditions. Some of the methods available for investigating properties of aggregates (flocs), such as size, strength and fractal dimension are also discussed, along with some related properties such as sedimentation rate and filterability of flocculated suspensions.
TL;DR: In some conditions, compact monodisperse multichain complexes are obtained (short surfactant chain length and polymer rigid enough); in most cases, however, the complexes are large, soft and polydisperse.
Abstract: Addition of surfactants to aqueous solutions of polyelectrolytes causes the spontaneous formation of complexes in a certain range of concentrations. In some conditions, compact monodisperse multichain complexes are obtained (short surfactant chain length and polymer rigid enough). The size of the complexes can be varied in controlled way from nanometers up to micrometers, but depends on the mixing procedure, whereas the shape of the complexes depends on the polymer backbone rigidity. These complexes exhibit microstructures analogue to that of the precipitates formed at higher concentrations. In most cases, however, the complexes are large, soft and polydisperse.
TL;DR: A state of the art review of the rice milling industry, its background studies, fundamental properties and industrial applications, and the key advance on the preparation of novel adsorbents, its major challenges together with the future expectation has been highlighted and discussed.
Abstract: Concern about environmental protection has aroused over the years from a global viewpoint. To date, the ever-increasing importance of biomass as the energy and material resources has lately been accounted by the rising prices for the crude petroleum oil. Rice husk ash, the most appropriate representative of the high ash biomass waste, is currently obtaining sufficient attraction, owning to its wide usefulness and potentiality in environmental conservation. Confirming the assertion, this paper presents a state of the art review of the rice milling industry, its background studies, fundamental properties and industrial applications. Moreover, the key advance on the preparation of novel adsorbents, its major challenges together with the future expectation has been highlighted and discussed. Conclusively, the expanding of rice husk ash in the field of adsorption science represents a viable and powerful tool, leading to the superior improvement of pollution control and environmental preservation.
TL;DR: Based on experimental studies with milk proteins mixed with non-ionic and ionic surfactants at the water/air and water/hexane interfaces, the potential of the theoretical tools is demonstrated and it is shown that the formation of mixed adsorption layer is based on a modification of the protein molecules via electrostatic (ionic) and/or hydrophobic interactions by the surfactant molecules and a competitive Adsorption of the resulting complexes with the free, unbound surfactan.
Abstract: Depending on the bulk composition, adsorption layers formed from mixed protein/surfactant solutions contain different amounts of protein. Clearly, increasing amounts of surfactant should decrease the amount of adsorbed proteins successively. However, due to the much larger adsorption energy, proteins are rather strongly bound to the interface and via competitive adsorption surfactants cannot easily displace proteins. A thermodynamic theory was developed recently which describes the composition of mixed protein/surfactant adsorption layers. This theory is based on models for the single compounds and allows a prognosis of the resulting mixed layers by using the characteristic parameters of the involved components. This thermodynamic theory serves also as the respective boundary condition for the dynamics of adsorption layers formed from mixed solutions and their dilational rheological behaviour. Based on experimental studies with milk proteins (beta-casein and beta-lactoglobulin) mixed with non-ionic (decyl and dodecyl dimethyl phosphine oxide) and ionic (sodium dodecyl sulphate and dodecyl trimethyl ammonium bromide) surfactants at the water/air and water/hexane interfaces, the potential of the theoretical tools is demonstrated. The displacement of pre-adsorbed proteins by subsequently added surfactant can be successfully studied by a special experimental technique based on a drop volume exchange. In this way the drop profile analysis can provide tensiometry and dilational rheology data (via drop oscillation experiments) for two adsorption routes--sequential adsorption of the single compounds in addition to the traditional simultaneous adsorption from a mixed solution. Complementary measurements of the surface shear rheology and the adsorption layer thickness via ellipsometry are added in order to support the proposed mechanisms drawn from tensiometry and dilational rheology, i.e. to show that the formation of mixed adsorption layer is based on a modification of the protein molecules via electrostatic (ionic) and/or hydrophobic interactions by the surfactant molecules and a competitive adsorption of the resulting complexes with the free, unbound surfactant. Under certain conditions, the properties of the sequentially formed layers differ from those formed simultaneously, which can be explained by the different locations of complex formation.
TL;DR: The polymeric surfactant was very effective in reducing Ostwald ripening as a result of its strong adsorption and the Gibbs elasticity produced by the polymeric Surfactant.
Abstract: This overview starts with a section on general classification of polymeric surfactants. Both homopolymers, block and graft copolymers are described. The solution properties of polymeric surfactants is described by using the Flory-Huggins theory. Particular attention is given to the effect of solvency of the medium for the polymer chains. The adsorption and conformation of homopolymers, block and graft copolymers at the solid/liquid interface is described. The theories of polymer adsorption and their predictions are briefly described. This is followed by a description of the experimental techniques that can be applied to study polymeric surfactant adsorption. Examples of adsorption isotherms of non-ionic polymeric surfactants are given. The effect of solvency on the adsorption amount is also described. Results for the adsorbed layer thickness of polymeric surfactants are given with particular attention to the effect of molecular weight. The interaction between particles containing adsorbed layers is described in terms of the unfavorable mixing of the stabilizing chains when these are in good solvent conditions. The entropic, volume restriction or elastic interaction that occurs on considerable overlap is also described. Combination of these two effects forms the basis of the theory of steric stabilization. The energy-distance curve produced with these sterically stabilized systems is described with particular attention of the effect of the ratio of adsorbed layer thickness to droplet radius. Examples of oil-in-water (O/W) and water-in-oil (W/O) emulsions stabilized with polymeric surfactants are given. Of particular interest is the O/W emulsions stabilized using hydrophobically modified inulin (INUTEC((R))SP1). The emulsions produced are highly stable against coalescence both in water and high electrolyte concentrations. This is accounted for by the multipoint attachment of the polymeric surfactant to the oil droplets with several alkyl groups and the strongly hydrated loops and tails of linear polyfructose. Evidence of this high stability was obtained from disjoining pressure measurements. Stabilization of suspensions using INUTEC((R))SP1 was described with particular reference to latexes that were prepared using emulsion polymerization. The high stability of the latexes is attributed to the strong adsorption of the polymeric surfactant on the particle surfaces and the enhanced steric stabilization produced by the strongly hydrated polyfructose loops and tails. Evidence for such high stability was obtained using Atomic Force Microscopy (AFM) measurements. The last part of the overview described the preparation and stabilization of nano-emulsions using INUTEC((R))SP1. In particular the polymeric surfactant was very effective in reducing Ostwald ripening as a result of its strong adsorption and the Gibbs elasticity produced by the polymeric surfactant.
TL;DR: Basic concepts on the physical-chemistry of gel swelling is first described, followed by different applications covering drug delivery, composite materials using polymer gels to modulate optical or magnetic and electrical properties, molecular imprinting, gel-based biosensors and polymer sensors and actuators used in the field of artificial muscles.
Abstract: In recent years, "smart" materials have been the focus of considerable interest, from both fundamental and applied perspectives. Polymer gels are within this category; they respond to specific environmental stimuli by changing their size. Thus, the internal structure, the refractive index, and the mechanical properties of the polymer network change. They are considered super absorbent materials, as they can absorb solvent up to several hundred times their own weight. They respond rapidly to local environmental variations, an important fact in device miniaturization and microsensor developments. As size changes are accompanied by changes in internal dimensions, microgels have found application as carriers of therapeutic drugs and as diagnostic agents. They have also been used as microreactors, optically active materials, for template synthesis of nanoparticles or fabrication of artificial muscle. In this paper we review a set of application based on the special features associated to this systems. Basic concepts on the physical-chemistry of gel swelling is first described, followed by different applications covering drug delivery, composite materials using polymer gels to modulate optical or magnetic and electrical properties, molecular imprinting, gel-based biosensors and polymer sensors and actuators used in the field of artificial muscles.
TL;DR: For liquid food products, colloidal interactions of emulsion droplets, particles, proteins, and polysaccharides with saliva and oral surfaces were found to affect texture characteristics as creaminess, fattiness, roughness and astringency.
Abstract: Recently, considerable attention has been given to the understanding of texture attributes that cannot directly be related to physical properties of food, such as creamy, crumbly and watery. The perception of these attributes is strongly related to the way the food is processed during food intake, mastication, swallowing of it and during the cleaning of the mouth after swallowing. Moreover, their perception is modulated by the interaction with other basic attributes, such as taste and aroma attributes (e.g. sourness and vanilla). To be able to link the composition and structure of food products to more complicated texture attributes, their initial physical/colloid chemical properties and the oral processing of these products must be well understood. Understanding of the processes in the mouth at colloidal length scales turned out to be essential to grasp the interplay between perception, oral physiology and food properties. In view of the huge differences in physical chemical properties between food products, it is practical to make a distinction between solid, semi-solid, and liquid food products. The latter ones are often liquid dispersions of emulsion droplets or particles in general. For liquid food products for instance flow behaviour and colloidal stability of dispersed particles play a main role in determining their textural properties. For most solid products stiffness and fracture behaviour in relation to water content are essential while for semi-solids a much larger range of mechanical properties will play a role. Examples of colloidal aspects of texture perception will be discussed for these three categories of products based on selected sensory attributes and/or relevant colloidal processes. For solid products some main factors determining crispness will be discussed. For crispiness of dry cellular solid products these are water content and the architecture of the product at mesoscopic length scales (20-1000 μm). In addition the distribution of water at mesoscopic length scales was found to be important. For semi-solid foods, sensory characteristics as spreadability, watery and crumbliness are primarily determined by food properties at mesoscopic length scales. Crumbliness is directly related to the formation of free running cracks that occur during eating of the product. Exudation of the continuous liquid phase of gels during compression gives rise to watery/juicy sensory attributes. For liquid food products, colloidal interactions of emulsion droplets, particles, proteins, and polysaccharides with saliva and oral surfaces were found to affect texture characteristics as creaminess, fattiness, roughness and astringency. © 2009 Elsevier B.V. All rights reserved.
TL;DR: Both normal micelles and water-in-oil microemulsions have been employed to directly precipitate nanoceria or other cerium precursors which can be converted into ceria by calcination.
Abstract: This review concerns recent research on the synthesis of cerium oxide (also known as ceria, CeO(2)) in colloidal dispersions media for obtaining high surface area catalyst materials Nanoparticles as small as 5 nm and surface area as high as 250 m(2)/g can be readily prepared by this method Both normal micelles and water-in-oil microemulsions have been employed to directly precipitate nanoceria or other cerium precursors which can be converted into ceria by calcination
TL;DR: Two new algorithms for reliable particle tracking in non-uniform flows to the level of accuracy already available for quiescent systems are proposed.
Abstract: We present recent advances in the instrumentation and analysis methods for quantitative imaging of concentrated colloidal suspensions under flow. After a brief review of colloidal imaging, we describe various flow geometries for two and three-dimensional (3D) imaging, including a 'confocal rheoscope'. This latter combination of a confocal microscope and a rheometer permits simultaneous characterization of rheological response and 3D microstructural imaging. The main part of the paper discusses in detail how to identify and track particles from confocal images taken during flow. After analyzing the performance of the most commonly used colloid tracking algorithm by Crocker and Grier extended to flowing systems, we propose two new algorithms for reliable particle tracking in non-uniform flows to the level of accuracy already available for quiescent systems. We illustrate the methods by applying it to data collected from colloidal flows in three different geometries (channel flow, parallel plate shear and cone plate rheometry).
TL;DR: This review starts by a general background on amphiphile self-assembly and phase separation phenomena in mixed polymer-surfactant solutions, then addresses vesicle formation, properties and stability not only in classic lipids, but also in various other surfactant systems, among which catanionic vesicles are highlighted.
Abstract: Mixed polymer-surfactant systems have been intensively investigated in the last two decades, with the main focus on surfactant micelles as the surfactant aggregate in interaction. The main types of phase behavior, driving forces and structural/rheological effects at stake are now fairly well understood. Polymer-vesicle systems, on the other hand, have received comparatively less attention from a physico-chemical perspective. In this review, our main goal has been to bridge this gap, taking a broad approach to cover a field that is in clear expansion, in view of its multiple implications for colloid and biological sciences and in applied areas. We start by a general background on amphiphile self-assembly and phase separation phenomena in mixed polymer-surfactant solutions. We then address vesicle formation, properties and stability not only in classic lipids, but also in various other surfactant systems, among which catanionic vesicles are highlighted. Traditionally, lipid and surfactant vesicles have been studied separately, with little cross-information and comparison, giving duplication of physico-chemical interpretations. This situation has changed in more recent times. We then proceed to cover more in-depth the work done on different aspects of the associative behavior between vesicles (of different composition and type of stability) and different types of polymers, including polysaccharides, proteins and DNA. Thus, phase behavior features, effects of vesicle structure and stability, and the forces/mechanisms of vesicle-macromolecule interaction are addressed. Such association may generate gels with interesting rheological properties and high potential for applications. Finally, special focus is also given to DNA, a high charge polymer, and its interactions with surfactants, and vesicles, in particular, in the context of gene transfection studies.
TL;DR: The influence of aluminium nanoparticles on the evaporation and wetting dynamics of ethanol sessile droplets on a heated PTFE surface is investigated experimentally and it is found that the deposition of nanoparticles into the triple contact line wedge during theEvaporation of the droplet causes a greater pinning time for nanofluid droplets.
Abstract: The influence of aluminium nanoparticles on the evaporation and wetting dynamics of ethanol sessile droplets on a heated PTFE surface is investigated experimentally. The experimental technique uses a goniometer to measure the evolution in time of the shape of the droplets (contact angle, base diameter and volume). The evaporation rate is deduced from the measurements of the evolution of volume in time. During the "pinning" phase and contrary to what is expected, the presence of nanoparticles leads to a reduction of the evaporation rate compared to the base fluid. It is found that the deposition of nanoparticles into the triple contact line wedge during the evaporation of the droplet causes a greater pinning time for nanofluid droplets. The overall evaporation time for base fluid droplets is found to be longer than for nanofluid ones. The wetting dynamics of the droplets throughout the evaporation process shows major influence of nanoparticles. Depinning contact angles tend to be larger for nanofluid droplets than for base liquid ones. Over a range of imposed substrate temperatures, no effect on the nanofluids depinning contact angle is observed. The alteration of contact line behavior as well as wettability can have important implications in a wide range of applications, e.g. two phase boiling heat transfer [Kim, S. J. et al., Appl. Phys. Lett., 2006, 89, 153107].