scispace - formally typeset
Search or ask a question

Showing papers in "Advances in Microbial Physiology in 1999"


Book ChapterDOI
TL;DR: The physiology and chemistry of citric and oxalic acid production in fungi are discussed, the intimate association of these acids and processes with metal speciation, physiology and mobility, and their importance and involvement in key fungal-mediated processes, including lignocellulose degradation, plant pathogenesis and metal biogeochemistry.
Abstract: The production of organic acids by fungi has profound implications for metal speciation, physiology and biogeochemical cycles. Biosynthesis of oxalic acid from glucose occurs by hydrolysis of oxaloacetate to oxalate and acetate catalysed by cytosolic oxaloacetase, whereas on citric acid, oxalate production occurs by means of glyoxylate oxidation. Citric acid is an intermediate in the tricarboxylic acid cycle, with metals greatly influencing biosynthesis: growth limiting concentrations of Mn, Fe and Zn are important for high yields. The metal-complexing properties of these organic acids assist both essential metal and anionic (e.g. phosphate) nutrition of fungi, other microbes and plants, and determine metal speciation and mobility in the environment, including transfer between terrestrial and aquatic habitats, biocorrosion and weathering. Metal solubilization processes are also of potential for metal recovery and reclamation from contaminated solid wastes, soils and low-grade ores. Such ‘heterotrophic leaching’ can occur by several mechanisms but organic acids occupy a central position in the overall process, supplying both protons and a metal-complexing organic acid anion. Most simple metal oxalates [except those of alkali metals, Fe(III) and Al] are sparingly soluble and precipitate as crystalline or amorphous solids. Calcium oxalate is the most important manifestation of this in the environment and, in a variety of crystalline structures, is ubiquitously associated with free-living, plant symbiotic and pathogenic fungi. The main forms are the monohydrate (whewellite) and the dihydrate (weddelite) and their formation is of significance in biomineralization, since they affect nutritional heterogeneity in soil, especially Ca, P, K and Al cycling. The formation of insoluble toxic metal oxalates, e.g. of Cu, may confer tolerance and ensure survival in contaminated environments. In semiarid environments, calcium oxalate formation is important in the formation and alteration of terrestrial subsurface limestones. Oxalate also plays an important role in lignocellulose degradation and plant pathogenesis, affecting activities of key enzymes and metal oxidoreduction reactions, therefore underpinning one of the most fundamental roles of fungi in carbon cycling in the natural environment. This review discusses the physiology and chemistry of citric and oxalic acid production in fungi, the intimate association of these acids and processes with metal speciation, physiology and mobility, and their importance and involvement in key fungal-mediated processes, including lignocellulose degradation, plant pathogenesis and metal biogeochemistry.

644 citations


Book ChapterDOI
TL;DR: A comparative sequence analysis with 298 available receiver domain sequences of cognate response regulators demonstrates a significant correlation between kinase and regulator subfamilies, suggesting that different subclasses of His-Asp phosphorelay systems have evolved independently of one another.
Abstract: Signal transduction in microorganisms and plants is often mediated by His-Asp phosphorelay systems. Two conserved families of proteins are centrally involved: histidine protein kinases and phospho-aspartyl response regulators. The kinases generally function in association with sensory elements that regulate their activities in response to environmental signals. A sequence analysis with 348 histidine kinase domains reveals that this family consists of distinct subgroups. A comparative sequence analysis with 298 available receiver domain sequences of cognate response regulators demonstrates a significant correlation between kinase and regulator subfamilies. These findings suggest that different subclasses of His-Asp phosphorelay systems have evolved independently of one another.

379 citations


Book ChapterDOI
TL;DR: The way in which bacteria use these systems to move to optimum environments and the interaction of the different sensory pathways to produce species-specific behavioural response will be the subject of this review.
Abstract: Many, if not most, bacterial species swim The synthesis and operation of the flagellum, the most complex organelle of a bacterium, takes a significant percentage of cellular energy, particularly in the nutrient limited environments in which many motile species are found It is obvious that motility accords cells a survival advantage over non-motile mutants under normal, poorly mixed conditions and is an important determinant in the development of many associations between bacteria and other organisms, whether as pathogens or symbionts and in colonization of niches and the development of biofilms This survival advantage is the result of sensory control of swimming behaviour Although too small to sense a gradient along the length of the cell, and unable to swim great distances because of buffetting by Brownian motion and the curvature resulting from a rotating flagellum, bacteria can bias their random swimming direction towards a more favourable environment The favourable environment will vary from species to species and there is now evidence that in many species this can change depending on the current physiological growth state of the cell In general, bacteria sense changes in a range of nutrients and toxins, compounds altering electron transport, acceptors or donors into the electron transport chain, pH, temperature and even the magnetic field of the Earth The sensory signals are balanced, and may be balanced with other sensory pathways such as quorum sensing, to identify the optimum current environment The central sensory pathway in this process is common to most bacteria and most effectors The environmental change is sensed by a sensory protein In most species examined this is a transmembrane protein, sensing the external environment, but there is increasing evidence for additional cytoplasmic receptors in many species All receptors, whether sensing sugars, amino acids or oxygen, share a cytoplasmic signalling domain that controls the activity of a histidine protein kinase, CheA, via a linker protein, CheW A reduction in an attractant generally leads to the increased autophosphorylation of CheA CheA passes its phosphate to a small, single domain response regulator, CheY CheY-P can interact with the flagellar motor to cause it to change rotational direction or stop Signal termination either via a protein, CheZ, which increases the dephosphorylation rate of CheY-P or via a second CheY which acts as a phosphate sink, allows the cell to swim off again, usually in a new direction In addition to signal termination the receptor must be reset, and this occurs via methylation of the receptor to return it to a non-signalling conformation The way in which bacteria use these systems to move to optimum environments and the interaction of the different sensory pathways to produce species-specific behavioural response will be the subject of this review

252 citations


Book ChapterDOI
TL;DR: This review deals primarily with the structure and operation of the bacterial flagellum, which is probably the most complex organelle found in bacteria.
Abstract: The bacterial flagellum is probably the most complex organelle found in bacteria. Although the ribosome may be made of slightly more subunits, the bacterial flagellum is a more organized and complex structure. The limited number of flagella must be targeted to the correct place on the cell membrane and a structure with cytoplasmic, cytoplasmic membrane, outer membrane and extracellular components must be assembled. The process of controlled transcription and assembly is still not fully understood. Once assembled, the motor complex in the cytoplasmic membrane rotates, driven by the transmembrane ion gradient, at speeds that can reach many 100 Hz, driving the bacterial cell at several body lengths a second. This coupling of an electrochemical gradient to mechanical rotational work is another fascinating feature of the bacterial motor. A significant percentage of a bacterium's energy may be used in synthesizing the complex structure of the flagellum and driving its rotation. Although patterns of swimming may be random in uniform environments, in the natural environment, where cells are confronted with gradients of metabolites and toxins, motility is used to move bacteria towards their optimum environment for growth and survival. A sensory system therefore controls the switching frequency of the rotating flagellum. This review deals primarily with the structure and operation of the bacterial flagellum. There has been a great deal of research in this area over the past 20 years and only some of this has been included. We apologize in advance if certain areas are covered rather thinly, but hope that interested readers will look at the excellent detailed reviews on those areas cited at those points.

99 citations


Book ChapterDOI
TL;DR: Methods investigated include the use of respiratory quotient to influence pyruvate production and induce fermentative activity, reduced aeration to increase PDC activity, and carbohydrate feeding to modify glycolytic enzyme activity to enhance enzyme activity.
Abstract: L-Phenylacetylcarbinol (L-PAC) is the precursor for L-ephedrine and D-pseudoephedrine, alkaloids possessing alpha- and beta-adrenergic activity. The most commonly used method for production of L-PAC is a biological method whereby the enzyme pyruvate decarboxylase (PDC) decarboxylates pyruvate and then condenses the product with added benzaldehyde. The process may be undertaken by either whole cells or purified PDC. If whole cells are used, the biomass may be grown and allowed to synthesize endogenous pyruvate, or the cells may be used as a catalyst only, with both pyruvate and benzaldehyde being added. Several yeast species have been investigated with regard to L-PAC-producing potential; the most commonly used organisms are strains of Saccharomyces cerevisiae and Candida utilis. It was found that initial high production rates did not necessarily result in the highest final yields. Researchers then examined ways of improving the productivity of the process. The substrate, benzaldehyde, and the product, L-PAC, as well as the by-products, were found to be toxic to the biomass. Methods examined to reduce toxicity include modification of benzaldehyde dosing regimes, immobilization of biomass or purified enzymes, modification of benzaldehyde solubility and the use of two-phase reaction systems. Various means of modifying metabolism to enhance enzyme activity, relevant metabolic pathways and yield have been examined. Methods investigated include the use of respiratory quotient to influence pyruvate production and induce fermentative activity, reduced aeration to increase PDC activity, and carbohydrate feeding to modify glycolytic enzyme activity. The effect of temperature on L-PAC yield has been examined to identify conditions which provide the optimal balance between L-PAC and benzyl alcohol production, and L-PAC inactivation. However, relatively little work has been undertaken on the effect of medium composition on L-PAC yield.

28 citations