scispace - formally typeset
Search or ask a question
JournalISSN: 1999-4893

Algorithms 

Multidisciplinary Digital Publishing Institute
About: Algorithms is an academic journal published by Multidisciplinary Digital Publishing Institute. The journal publishes majorly in the area(s): Computer science & Artificial intelligence. It has an ISSN identifier of 1999-4893. It is also open access. Over the lifetime, 2461 publications have been published receiving 20342 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The usefulness of the proposed method, called automatic multiscale-based peak detection (AMPD), is shown by applying the AMPD algorithm to simulated and real-world signals.
Abstract: We present a new method for automatic detection of peaks in noisy periodic and quasi-periodic signals. The new method, called automatic multiscale-based peak detection (AMPD), is based on the calculation and analysis of the local maxima scalogram, a matrix comprising the scale-dependent occurrences of local maxima. The usefulness of the proposed method is shown by applying the AMPD algorithm to simulated and real-world signals.

303 citations

Journal ArticleDOI
TL;DR: A comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to susceptible–infected–recovered (SIR) and susceptible-exposed-infectious-removed (SEIR) models suggests machine learning as an effective tool to model the outbreak.
Abstract: Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and these models are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models need to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to susceptible–infected–recovered (SIR) and susceptible-exposed-infectious-removed (SEIR) models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP; and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior across nations, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. This paper further suggests that a genuine novelty in outbreak prediction can be realized by integrating machine learning and SEIR models.

256 citations

Journal ArticleDOI
TL;DR: The quantum alternating operator ansatz (QOANSatz) as discussed by the authors is a generalization of the original quantum approximate optimization algorithm, which alternates between applying a cost function based Hamiltonian and a mixing Hamiltonian.
Abstract: The next few years will be exciting as prototype universal quantum processors emerge, enabling the implementation of a wider variety of algorithms. Of particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation and which have the potential to significantly expand the breadth of applications for which quantum computers have an established advantage. A leading candidate is Farhi et al.’s quantum approximate optimization algorithm, which alternates between applying a cost function based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the quantum alternating operator ansatz, is the consideration of general parameterized families of unitaries rather than only those corresponding to the time evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas. For cases that call for mixing only within a desired subspace, refocusing on unitaries rather than Hamiltonians enables more efficiently implementable mixers than was possible in the original framework. Such mixers are particularly useful for optimization problems with hard constraints that must always be satisfied, defining a feasible subspace, and soft constraints whose violation we wish to minimize. More efficient implementation enables earlier experimental exploration of an alternating operator approach, in the spirit of the quantum approximate optimization algorithm, to a wide variety of approximate optimization, exact optimization, and sampling problems. In addition to introducing the quantum alternating operator ansatz, we lay out design criteria for mixing operators, detail mappings for eight problems, and provide a compendium with brief descriptions of mappings for a diverse array of problems.

233 citations

Journal ArticleDOI
TL;DR: The NIRS Brain AnalyzIR toolbox is introduced as an open-source Matlab-based analysis package for fNIRS data management, pre-processing, and first- and second-level statistical analysis, based on the object-oriented programming paradigm.
Abstract: Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low-levels of light (650–900 nm) to measure changes in cerebral blood volume and oxygenation. Over the last several decades, this technique has been utilized in a growing number of functional and resting-state brain studies. The lower operation cost, portability, and versatility of this method make it an alternative to methods such as functional magnetic resonance imaging for studies in pediatric and special populations and for studies without the confining limitations of a supine and motionless acquisition setup. However, the analysis of fNIRS data poses several challenges stemming from the unique physics of the technique, the unique statistical properties of data, and the growing diversity of non-traditional experimental designs being utilized in studies due to the flexibility of this technology. For these reasons, specific analysis methods for this technology must be developed. In this paper, we introduce the NIRS Brain AnalyzIR toolbox as an open-source Matlab-based analysis package for fNIRS data management, pre-processing, and first- and second-level (i.e., single subject and group-level) statistical analysis. Here, we describe the basic architectural format of this toolbox, which is based on the object-oriented programming paradigm. We also detail the algorithms for several of the major components of the toolbox including statistical analysis, probe registration, image reconstruction, and region-of-interest based statistics.

228 citations

Journal ArticleDOI
TL;DR: In this article, a knowledge-base representation learning framework is proposed to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm was proposed to generate personalized explanations for the recommended items.
Abstract: Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms—especially the collaborative filtering (CF)- based approaches with shallow or deep models—usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amounts of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users’ historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. A great challenge for using knowledge bases for recommendation is how to integrate large-scale structured and unstructured data, while taking advantage of collaborative filtering for highly accurate performance. Recent achievements in knowledge-base embedding (KBE) sheds light on this problem, which makes it possible to learn user and item representations while preserving the structure of their relationship with external knowledge for explanation. In this work, we propose to explain knowledge-base embeddings for explainable recommendation. Specifically, we propose a knowledge-base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.

214 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023331
2022502
2021321
2020337
2019272
2018221