scispace - formally typeset
Search or ask a question

Showing papers in "American Journal of Human Genetics in 1998"


Journal ArticleDOI
TL;DR: It is shown how variance-component linkage methods can be used in pedigrees of arbitrary size and complexity, and a general framework for multipoint identity-by-descent (IBD) probability calculations is developed.
Abstract: Multipoint linkage analysis of quantitative-trait loci (QTLs) has previously been restricted to sibships and small pedigrees. In this article, we show how variance-component linkage methods can be used in pedigrees of arbitrary size and complexity, and we develop a general framework for multipoint identity-by-descent (IBD) probability calculations. We extend the sib-pair multipoint mapping approach of Fulker et al. to general relative pairs. This multipoint IBD method uses the proportion of alleles shared identical by descent at genotyped loci to estimate IBD sharing at arbitrary points along a chromosome for each relative pair. We have derived correlations in IBD sharing as a function of chromosomal distance for relative pairs in general pedigrees and provide a simple framework whereby these correlations can be easily obtained for any relative pair related by a single line of descent or by multiple independent lines of descent. Once calculated, the multipoint relative-pair IBDs can be utilized in variance-component linkage analysis, which considers the likelihood of the entire pedigree jointly. Examples are given that use simulated data, demonstrating both the accuracy of QTL localization and the increase in power provided by multipoint analysis with 5-, 10-, and 20-cM marker maps. The general pedigree variance component and IBD estimation methods have been implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package.

3,080 citations


Journal ArticleDOI
TL;DR: The lifetime risk of breast cancer appears similar to the risk in BRCA1 carriers, but there was some suggestion of a lower risk in bRCA2 carriers <50 years of age.
Abstract: The contribution of BRCA1 and BRCA2 to inherited breast cancer was assessed by linkage and mutation analysis in 237 families, each with at least four cases of breast cancer, collected by the Breast Cancer Linkage Consortium. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an estimated 52% of families, to BRCA2 in 32% of families, and to neither gene in 16% (95% confidence interval [CI] 6%-28%), suggesting other predisposition genes. The majority (81%) of the breast-ovarian cancer families were due to BRCA1, with most others (14%) due to BRCA2. Conversely, the majority of families with male and female breast cancer were due to BRCA2 (76%). The largest proportion (67%) of families due to other genes was found in families with four or five cases of female breast cancer only. These estimates were not substantially affected either by changing the assumed penetrance model for BRCA1 or by including or excluding BRCA1 mutation data. Among those families with disease due to BRCA1 that were tested by one of the standard screening methods, mutations were detected in the coding sequence or splice sites in an estimated 63% (95% CI 51%-77%). The estimated sensitivity was identical for direct sequencing and other techniques. The penetrance of BRCA2 was estimated by maximizing the LOD score in BRCA2-mutation families, over all possible penetrance functions. The estimated cumulative risk of breast cancer reached 28% (95% CI 9%-44%) by age 50 years and 84% (95% CI 43%-95%) by age 70 years. The corresponding ovarian cancer risks were 0.4% (95% CI 0%-1%) by age 50 years and 27% (95% CI 0%-47%) by age 70 years. The lifetime risk of breast cancer appears similar to the risk in BRCA1 carriers, but there was some suggestion of a lower risk in BRCA2 carriers <50 years of age.

2,892 citations


Journal ArticleDOI
TL;DR: Four error-checking algorithms are implemented in a new computer program, PedCheck, which will assist researchers in identifying all Mendelian inconsistencies in pedigree data and will provide them with useful and detailed diagnostic information to help resolve the errors.
Abstract: Summary Prior to performance of linkage analysis, elimination of all Mendelian inconsistencies in the pedigree data is essential. Often, identification of erroneous genotypes by visual inspection can be very difficult and time consuming. In fact, sometimes the errors are not recognized until the stage of running linkage-analysis software. The effort then required to find the erroneous genotypes and to cross-reference pedigree and marker data that may have been recoded and renumbered can be not only tedious but also quite daunting, in the case of very large pedigrees. We have implemented four error-checking algorithms in a new computer program, PedCheck, which will assist researchers in identifying all Mendelian inconsistencies in pedigree data and will provide them with useful and detailed diagnostic information to help resolve the errors. Our program, which uses many of the algorithms implemented in VITESSE, handles large data sets quickly and efficiently, accepts a variety of input formats, and offers various error-checking algorithms that match the subtlety of the pedigree error. These algorithms range from simple parent-offspring–compatibility checks to a single-locus likelihood-based statistic that identifies and ranks the individuals most likely to be in error. We use various real data sets to illustrate the power and effectiveness of our program.

2,158 citations


Journal ArticleDOI
TL;DR: In this paper, a real-time quantitative PCR assay was developed to measure the concentration of fetal DNA in maternal plasma and serum, and the results showed that fetal DNA is present in high concentrations in maternal placenta, reaching a mean of 25.4 genome equivalents/ml (range 3.3-69.4) in early pregnancy and 292.2 genome equivalents /ml(range 76.9-769) in late pregnancy.
Abstract: Summary We have developed a real-time quantitative PCR assay to measure the concentration of fetal DNA in maternal plasma and serum. Our results show that fetal DNA is present in high concentrations in maternal plasma, reaching a mean of 25.4 genome equivalents/ml (range 3.3–69.4) in early pregnancy and 292.2 genome equivalents/ml (range 76.9–769) in late pregnancy. These concentrations correspond to 3.4% (range 0.39%–11.9%) and 6.2% (range 2.33%–11.4%) of the total plasma DNA in early and late pregnancy, respectively. Sequential follow-up study of women who conceived by in vitro fertilization shows that fetal DNA can be detected in maternal serum as early as the 7th wk of gestation and that it then increases in concentration as pregnancy progresses. These data suggest that fetal DNA can be readily detected in maternal plasma and serum and may be a valuable source of material for noninvasive prenatal diagnosis.

1,753 citations


Journal ArticleDOI
TL;DR: The data suggest that the combined heterozygosity for the two MTHFR common mutations accounts for a proportion of folate-related NTDs, which is not explained by homozygosity by the 677(C-->T) mutation, and can be an additional genetic risk factor for N TDs.
Abstract: Summary Recently, we showed that homozygosity for the common 677(C→T) mutation in the methylenetetrahydrofolate reductase (MTHFR) gene, causing thermolability of the enzyme, is a risk factor for neural-tube defects (NTDs). We now report on another mutation in the same gene, the 1298(A→C) mutation, which changes a glutamate into an alanine residue. This mutation destroys an Mbo II recognition site and has an allele frequency of .33. This 1298(A→C) mutation results in decreased MTHFR activity (one-way analysis of variance [ANOVA] P P P n = 86) of the NTD patients compared with 20% ( n = 403) among controls, resulting in an odds ratio of 2.04 (95% confidence interval: .9–4.7). These data suggest that the combined heterozygosity for the two MTHFR common mutations accounts for a proportion of folate-related NTDs, which is not explained by homozygosity for the 677(C→T) mutation, and can be an additional genetic risk factor for NTDs.

1,598 citations


Journal ArticleDOI
TL;DR: Comprehensive human genetic maps were constructed on the basis of nearly 1 million genotypes from eight CEPH families and incorporated >8,000 short tandem-repeat polymorphisms (STRPs), primarily from Généthon, the Cooperative Human Linkage Center, the Utah Marker Development Group, and the Marshfield Medical Research Foundation.
Abstract: Comprehensive human genetic maps were constructed on the basis of nearly 1 million genotypes from eight CEPH families; they incorporated >8,000 short tandem-repeat polymorphisms (STRPs), primarily from Genethon, the Cooperative Human Linkage Center, the Utah Marker Development Group, and the Marshfield Medical Research Foundation. As part of the map building process, 0.08% of the genotypes that resulted in tight double recombinants and that largely, if not entirely, represent genotyping errors, mutations, or gene-conversion events were removed. The total female, male, and sex-averaged lengths of the final maps were 44, 27, and 35 morgans, respectively. Numerous (267) sets of STRPs were identified that represented the exact same loci yet were developed independently and had different primer pairs. The distributions of the total number of recombination events per gamete, among the eight mothers of the CEPH families, were significantly different, and this variation was not due to maternal age. The female:male ratio of genetic distance varied across individual chromosomes in a remarkably consistent fashion, with peaks at the centromeres of all metacentric chromosomes. The new linkage maps plus much additional information, including a query system for use in the construction of reliably ordered maps for selected subsets of markers, are available from the Marshfield Website.

1,104 citations


Journal ArticleDOI
TL;DR: The data demonstrate that mutation rates of different loci can differ by several orders of magnitude and that different alleles at one locus exhibit different mutation rates.
Abstract: Summary In 10,844 parent/child allelic transfers at nine short-tandem-repeat (STR) loci, 23 isolated STR mismatches were observed. The parenthood in each of these cases was highly validated (probability >99.97%). The event was always repeat related, owing to either a single-step mutation ( n =22) or a double-step mutation ( n =1). The mutation rate was between 0 and 7×10 −3 per locus per gamete per generation. No mutations were observed in three of the nine loci. Mutation events in the male germ line were five to six times more frequent than in the female germ line. A positive exponential correlation between the geometric mean of the number of uninterrupted repeats and the mutation rate was observed. Our data demonstrate that mutation rates of different loci can differ by several orders of magnitude and that different alleles at one locus exhibit different mutation rates.

783 citations


Journal ArticleDOI
TL;DR: Significant nonrandom association between two markers located 22 cM apart (FY-null and AT3) is detected, most likely due to admixture linkage disequilibrium created in the interbreeding of the two parental populations, emphasize the importance of admixed populations as a useful resource for mapping traits with different prevalence in two parental population.
Abstract: We analyzed the European genetic contribution to 10 populations of African descent in the United States (Maywood, Illinois; Detroit; New York; Philadelphia; Pittsburgh; Baltimore; Charleston, South Carolina; New Orleans; and Houston) and in Jamaica, using nine autosomal DNA markers. These markers either are population-specific or show frequency differences >45% between the parental populations and are thus especially informative for admixture. European genetic ancestry ranged from 6.8% (Jamaica) to 22.5% (New Orleans). The unique utility of these markers is reflected in the low variance associated with these admixture estimates (SEM 1.3%-2.7%). We also estimated the male and female European contribution to African Americans, on the basis of informative mtDNA (haplogroups H and L) and Y Alu polymorphic markers. Results indicate a sex-biased gene flow from Europeans, the male contribution being substantially greater than the female contribution. mtDNA haplogroups analysis shows no evidence of a significant maternal Amerindian contribution to any of the 10 populations. We detected significant nonrandom association between two markers located 22 cM apart (FY-null and AT3), most likely due to admixture linkage disequilibrium created in the interbreeding of the two parental populations. The strength of this association and the substantial genetic distance between FY and AT3 emphasize the importance of admixed populations as a useful resource for mapping traits with different prevalence in two parental populations.

769 citations


Journal ArticleDOI
TL;DR: A model for evaluating the probabilities that a woman is a carrier of a mutation of BRCA1 and BRCa2, on the basis of her family history of breast and ovarian cancer in first- and second-degree relatives is developed.
Abstract: Breast cancer-susceptibility genes BRCA1 and BRCA2 have recently been identified on the human genome. Women who carry a mutation of one of these genes have a greatly increased chance of developing breast and ovarian cancer, and they usually develop the disease at a much younger age, compared with normal individuals. Women can be tested to see whether they are carriers. A woman who undergoes genetic counseling before testing can be told the probabilities that she is a carrier, given her family history. In this paper we develop a model for evaluating the probabilities that a woman is a carrier of a mutation of BRCA1 and BRCA2, on the basis of her family history of breast and ovarian cancer in first- and second-degree relatives. Of special importance are the relationships of the family members with cancer, the ages at onset of the diseases, and the ages of family members who do not have the diseases. This information can be elicited during genetic counseling and prior to genetic testing. The carrier probabilities are obtained from Bayes's rule, by use of family history as the evidence and by use of the mutation prevalences as the prior distribution. In addressing an individual's carrier probabilities, we incorporate uncertainty about some of the key inputs of the model, such as the age-specific incidence of diseases and the overall prevalence of mutations. There is some evidence that other, undiscovered genes may be important in explaining familial breast cancer. Users of the current version of the model should be aware of this limitation. The methodology that we describe can be extended to more than two genes, should data become available about other genes.

730 citations


Journal ArticleDOI
TL;DR: This article describes a method, called the "sib TDT" (or "S-TDT"), that overcomes this problem by use of marker data from unaffected sibs instead of from parents, thus allowing application of the principle of the TDT to sibships without parental data.
Abstract: Summary Linkage analysis with genetic markers has been successful in the localization of genes for many monogenic human diseases. In studies of complex diseases, however, tests that rely on linkage disequilibrium (the simultaneous presence of linkage and association) are often more powerful than those that rely on linkage alone. This advantage is illustrated by the transmission/disequilibrium test (TDT). The TDT requires data (marker genotypes) for affected individuals and their parents; for some diseases, however, data from parents may be difficult or impossible to obtain. In this article, we describe a method, called the "sib TDT" (or "S-TDT"), that overcomes this problem by use of marker data from unaffected sibs instead of from parents, thus allowing application of the principle of the TDT to sibships without parental data. In a single collection of families, there might be some that can be analyzed only by the TDT and others that are suitable for analysis by the S-TDT. We show how all the data may be used jointly in one overall TDT - type procedure that tests for linkage in the presence of association. These extensions of the TDT will be valuable for the study of diseases of late onset, such as non–insulin-dependent diabetes, cardiovascular diseases, and other diseases associated with aging.

677 citations


Journal ArticleDOI
TL;DR: The geographic cline of CCR5-Delta32 frequencies and its recent emergence are consistent with a historic strong selective event, driving its frequency upward in ancestral Caucasian populations.
Abstract: The CCR5-Delta32 deletion obliterates the CCR5 chemokine and the human immunodeficiency virus (HIV)-1 coreceptor on lymphoid cells, leading to strong resistance against HIV-1 infection and AIDS. A genotype survey of 4,166 individuals revealed a cline of CCR5-Delta32 allele frequencies of 0%-14% across Eurasia, whereas the variant is absent among native African, American Indian, and East Asian ethnic groups. Haplotype analysis of 192 Caucasian chromosomes revealed strong linkage disequilibrium between CCR5 and two microsatellite loci. By use of coalescence theory to interpret modern haplotype genealogy, we estimate the origin of the CCR5-Delta32-containing ancestral haplotype to be approximately 700 years ago, with an estimated range of 275-1,875 years. The geographic cline of CCR5-Delta32 frequencies and its recent emergence are consistent with a historic strong selective event (e.g. , an epidemic of a pathogen that, like HIV-1, utilizes CCR5), driving its frequency upward in ancestral Caucasian populations.

Journal ArticleDOI
TL;DR: The data indicate that the A1555G mutation accounts for a large proportion of the Spanish families with late-onset sensorineural deafness, that this mutation has an age-dependent penetrance for deafness (enhanced by treatment with aminoglycosides), and that mtDNA backgrounds probably do not play a major role in disease expression.
Abstract: Summary Hearing loss involves both genetic and environmental factors. A mutation (A1555G) in the mtDNA has been associated with aminoglycoside-induced and nonsyndromic sensorineural deafness. The pathological significance of this mutation in Caucasoid families has not been established, and its relationship with antibiotic treatment is not well understood. We studied 70 Spanish families with sensorineural deafness (36 congenital and 34 late onset) for the mtDNA A1555G mutation. The A1555G mutation was found in 19 families with maternally transmitted deafness but not in the other 51 families or in 200 control subjects. In 12 families all the patients with the A1555G mutation who received aminoglycosides became deaf, representing 30.3% of the deaf patients in these families. None of the deaf patients from seven other families received aminoglycosides. Overall, only 17.7% of the patients with deafness and the A1555G mutation had been treated with aminoglycosides. The age at onset of deafness was lower (median age 5 years, range 1–52 years) in those treated with aminoglycosides than in those who did not receive antibiotics (median age 20 years, range 1–65 years) ( P

Journal ArticleDOI
TL;DR: Analysis of 58 multiplex families each having at least two affected children diagnosed with autosomal recessive nonsyndromic deafness indicates that 101T-->C is not sufficient to cause hearing loss.
Abstract: Mutations in the connexin 26 (Cx26) gene (GJB2) are associated with the type of autosomal recessive nonsyndromic neurosensory deafness known as "DFNB1." Studies indicate that DFNB1 (13q11-12) causes 20% of all childhood deafness and may have a carrier rate as high as 2. 8%. This study describes the analysis of 58 multiplex families each having at least two affected children diagnosed with autosomal recessive nonsyndromic deafness. Twenty of the 58 families were observed to have mutations in both alleles of Cx26. Thirty-three of 116 chromosomes contained a 30delG allele, for a frequency of .284. This mutation was observed in 2 of 192 control chromosomes, for an estimated gene frequency of .01+/-.007. The homozygous frequency of the 30delG allele is then estimated at .0001, or 1/10,000. Given that the frequency of all childhood hearing impairment is 1/1,000 and that half of that is genetic, the specific mutation 30delG is responsible for 10% of all childhood hearing loss and for 20% of all childhood hereditary hearing loss. Six novel mutations were also observed in the affected population. The deletions detected cause frameshifts that would severely disrupt the protein structure. Three novel missense mutations, Val84Met, Val95Met, and Ser113Pro, were observed. The missense mutation 101T-->C has been reported to be a dominant allele of DFNA3, a dominant nonsyndromic hearing loss. Data further supporting the finding that this mutation does not cause dominant hearing loss are presented. This allele was found in a recessive family segregating independently from the hearing-loss phenotype and in 3 of 192 control chromosomes. These results indicate that 101T-->C is not sufficient to cause hearing loss.

Journal ArticleDOI
TL;DR: A genomic scan was conducted to identify loci linked to diabetes and body-mass index in Pima Indians, a Native American population with a high prevalence of type II diabetes.
Abstract: Genetic factors influence the development of type II diabetes mellitus, but genetic loci for the most common forms of diabetes have not been identified. A genomic scan was conducted to identify loci linked to diabetes and body-mass index (BMI) in Pima Indians, a Native American population with a high prevalence of type II diabetes. Among 264 nuclear families containing 966 siblings, 516 autosomal markers with a median distance between adjacent markers of 6.4 cM were genotyped. Variance-components methods were used to test for linkage with an age-adjusted diabetes score and with BMI. In multipoint analyses, the strongest evidence for linkage with age-adjusted diabetes (LOD = 1.7) was on chromosome 11q, in the region that was also linked most strongly with BMI (LOD = 3.6). Bivariate linkage analyses strongly rejected both the null hypothesis of no linkage with either trait and the null hypothesis of no contribution of the locus to the covariation among the two traits. Sib-pair analyses suggest additional potential diabetes-susceptibility loci on chromosomes 1q and 7q.

Journal ArticleDOI
TL;DR: It is suggested that APOE is a susceptibility gene for AMD and apoE staining was consistently present in the disease-associated deposits in AMD-maculae-that is, drusen and basal laminar deposit.
Abstract: Age-related macular degeneration (AMD) is the most common geriatric eye disorder leading to blindness and is characterized by degeneration of the neuroepithelium in the macular area of the eye. Apolipoprotein E (apoE), the major apolipoprotein of the CNS and an important regulator of cholesterol and lipid transport, appears to be associated with neurodegeneration. The apoE gene (APOE) polymorphism is a strong risk factor for various neurodegenerative diseases, and the apoE protein has been demonstrated in disease-associated lesions of these disorders. Hypothesizing that variants of APOE act as a potential risk factor for AMD, we performed a genetic-association study among 88 AMD cases and 901 controls derived from the population-based Rotterdam Study in the Netherlands. The APOE polymorphism showed a significant association with the risk for AMD; the APOE epsilon4 allele was associated with a decreased risk (odds ratio 0.43 [95% confidence interval 0.21-0. 88]), and the epsilon2 allele was associated with a slightly increased risk of AMD (odds ratio 1.5 [95% confidence interval 0.8-2. 82]). To investigate whether apoE is directly involved in the pathogenesis of AMD, we studied apoE immunoreactivity in 15 AMD and 10 control maculae and found that apoE staining was consistently present in the disease-associated deposits in AMD-maculae-that is, drusen and basal laminar deposit. Our results suggest that APOE is a susceptibility gene for AMD.

Journal ArticleDOI
TL;DR: The results replicate and extend previous findings of the association between the DAT1 gene and childhood ADHD and represent one of the first replicated relations of a candidate gene and a psychiatric disorder in children.
Abstract: Summary Attention-deficit hyperactivity disorder (ADHD) affects ∼3%–5% of children in the United States. In the current psychiatric nomenclature, ADHD comprises three subtypes: inattentive, hyperactive-impulsive, and combined. In this study, we used four analytic strategies to examine the association and linkage of the dopamine transporter gene (DAT1) and ADHD. Our sample included 122 children referred to psychiatric clinics for behavioral and learning problems that included but were not limited to ADHD, as well as their parents and siblings. Within-family analyses of linkage disequilibrium, using the transmission disequilibrium test (TDT), confirmed the 480-bp allele as the high-risk allele. In between-family association analyses, levels of hyperactive-impulsive symptoms but not inattentive symptoms were related to the number of DAT1 high-risk alleles. Siblings discordant for the number of DAT1 high-risk alleles differed markedly in their levels of both hyperactive-impulsive and inattentive symptoms, such that the sibling with the higher number of high-risk alleles had much higher symptom levels. Within-family analyses of linkage disequilibrium, using the TDT, suggested association and linkage of ADHD with DAT1 and that this relation was especially strong with the combined but not the inattentive subtype. The relation of DAT1 to ADHD increased monotonically, from low to medium to high levels of symptom severity. Our results replicate and extend previous findings of the association between the DAT1 gene and childhood ADHD. This represents one of the first replicated relations of a candidate gene and a psychiatric disorder in children.

Journal ArticleDOI
TL;DR: Sequence analysis of SURF-1 revealed mutations in numerous DNA samples from LD(COX-) patients, indicating that this gene is responsible for the major complementation group in this important mitochondrial disorder.
Abstract: Summary Leigh disease associated with cytochrome c oxidase deficiency (LD[COX−]) is one of the most common disorders of the mitochondrial respiratory chain, in infancy and childhood. No mutations in any of the genes encoding the COX-protein subunits have been identified in LD(COX−) patients. Using complementation assays based on the fusion of LD(COX−) cell lines with several rodent/human rho0 hybrids, we demonstrated that the COX phenotype was rescued by the presence of a normal human chromosome 9. Linkage analysis restricted the disease locus to the subtelomeric region of chromosome 9q, within the 7-cM interval between markers D9S1847 and D9S1826. Candidate genes within this region include SURF-1, the yeast homologue (SHY-1) of which encodes a mitochondrial protein necessary for the maintenance of COX activity and respiration. Sequence analysis of SURF-1 revealed mutations in numerous DNA samples from LD(COX−) patients, indicating that this gene is responsible for the major complementation group in this important mitochondrial disorder.

Journal ArticleDOI
TL;DR: The data suggest that the design and interpretation of disease-association studies may not be as straightforward as often is assumed, owing to complex historical patterns of population founding, drift, selection, and recombination.
Abstract: Summary Allelic variation in 9.7 kb of genomic DNA sequence from the human lipoprotein lipase gene ( LPL ) was scored in 71 healthy individuals (142 chromosomes) from three populations: African Americans (24) from Jackson, MS; Finns (24) from North Karelia, Finland; and non-Hispanic Whites (23) from Rochester, MN. The sequences had a total of 88 variable sites, with a nucleotide diversity (site-specific heterozygosity) of .002±.001 across this 9.7-kb region. The frequency spectrum of nucleotide variation exhibited a slight excess of heterozygosity, but, in general, the data fit expectations of the infinite-sites model of mutation and genetic drift. Allele-specific PCR helped resolve linkage phases, and a total of 88 distinct haplotypes were identified. For 1,410 (64%) of the 2,211 site pairs, all four possible gametes were present in these haplotypes, reflecting a rich history of past recombination. Despite the strong evidence for recombination, extensive linkage disequilibrium was observed. The number of haplotypes generally is much greater than the number expected under the infinite-sites model, but there was sufficient multisite linkage disequilibrium to reveal two major clades, which appear to be very old. Variation in this region of LPL may depart from the variation expected under a simple, neutral model, owing to complex historical patterns of population founding, drift, selection, and recombination. These data suggest that the design and interpretation of disease-association studies may not be as straightforward as often is assumed.

Journal ArticleDOI
TL;DR: Although the likelihood paradigm has been around for some time, Royall's distinctive voice, combined with his contribution of several novel lines of argument, has given new impetus to a school of statistical thought deserving the renewed attention of the human genetics community as mentioned in this paper.
Abstract: Although the likelihood paradigm has been around for some time, Royall's distinctive voice, combined with his contribution of several novel lines of argument, has given new impetus to a school of statistical thought deserving the renewed attention of the human genetics community. For, among all the possible purposes of statistical inference, surely the measurement of evidence is first and foremost among our needs. Royall, already well-known in statistical circles for his earlier work on principles of inference and finite-population inference, has now provided a valuable manifesto for statisticians who wish to practice not just mathematics—but science.

Journal ArticleDOI
TL;DR: The results provide the basis for a molecular-genetic screening approach that will supplement the clinical evaluation and genetic counseling of members of MEN1 families and SSCP was found to be a sensitive and specific mutational screening method that detected >85% of the mutations.
Abstract: Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by tumors of the parathyroids, pancreatic islets, and anterior pituitary. The MEN1 gene, on chromosome 11q13, has recently been cloned, and mutations have been identified. We have characterized such MEN1 mutations, assessed the reliability of SSCP analysis for the detection of these mutations, and estimated the age-related penetrance for MEN1. Sixty-three unrelated MEN1 kindreds (195 affected and 396 unaffected members) were investigated for mutations in the 2,790-bp coding region and splice sites, by SSCP and DNA sequence analysis. We identified 47 mutations (12 nonsense mutations, 21 deletions, 7 insertions, 1 donor splice-site mutation, and 6 missense mutations), that were scattered throughout the coding region, together with six polymorphisms that had heterozygosity frequencies of 2%-44%. More than 10% of the mutations arose de novo, and four mutation hot spots accounted for >25% of the mutations. SSCP was found to be a sensitive and specific mutational screening method that detected >85% of the mutations. Two hundred and one MEN1 mutant-gene carriers (155 affected and 46 unaffected) were identified, and these helped to define the age-related penetrance of MEN1 as 7%, 52%, 87%, 98%, 99%, and 100% at 10, 20, 30, 40, 50, and 60 years of age, respectively. These results provide the basis for a molecular-genetic screening approach that will supplement the clinical evaluation and genetic counseling of members of MEN1 families.

Journal ArticleDOI
TL;DR: This analysis revealed that a major Paleolithic population expansion from the "Atlantic zone" (southwestern Europe) occurred 10,000-15,000 years ago, after the Last Glacial Maximum, with haplogroup V, an autochthonous European haplogroups most likely originated in the northern Iberian peninsula or southwestern France at about the time of the Younger Dryas.
Abstract: mtDNA sequence variation was studied in 419 individuals from nine Eurasian populations, by high-resolution RFLP analysis, and it was followed by sequencing of the control region of a subset of these mtDNAs and a detailed survey of previously published data from numerous other European populations. This analysis revealed that a major Paleolithic population expansion from the "Atlantic zone" (southwestern Europe) occurred 10,000-15,000 years ago, after the Last Glacial Maximum. As an mtDNA marker for this expansion we identified haplogroup V, an autochthonous European haplogroup, which most likely originated in the northern Iberian peninsula or southwestern France at about the time of the Younger Dryas. Its sister haplogroup, H, which is distributed throughout the entire range of Caucasoid populations and which originated in the Near East approximately 25,000-30,000 years ago, also took part in this expansion, thus rendering it by far the most frequent (40%-60%) haplogroup in western Europe. Subsequent migrations after the Younger Dryas eventually carried those "Atlantic" mtDNAs into central and northern Europe. This scenario, already implied by archaeological records, is given overwhelming support from both the distribution of the autochthonous European Y chromosome type 15, as detected by the probes 49a/f, and the synthetic maps of nuclear data.

Journal ArticleDOI
TL;DR: A log-linear method for analysis of case-parent-triad data, based on maximum likelihood with stratification on parental mating type, which generalizes easily to accommodate maternal effects on risk and produces powerful and orthogonal tests of the contribution of fetal versus maternal genetic factors.
Abstract: We describe a log-linear method for analysis of case-parent-triad data, based on maximum likelihood with stratification on parental mating type. The method leads to estimates of association parameters, such as relative risks, for a single allele, and also to likelihood ratio chi2 tests (LRTs) of linkage disequilibrium. Hardy-Weinberg equilibrium need not be assumed. Our simulations suggest that the LRT has power similar to that of the chi2 "score" test proposed by Schaid and Sommer and that both can outperform the transmission/disequilibrium test (TDT), although the TDT can perform better under an additive model of inheritance. Because a restricted version of the LRT is asymptotically equivalent to the TDT, the proposed test can be regarded as a generalization of the TDT. The method that we describe generalizes easily to accommodate maternal effects on risk and, in fact, produces powerful and orthogonal tests of the contribution of fetal versus maternal genetic factors. We further generalize the model to allow for effects of parental imprinting. Imprinting effects can be fitted by a simple, iterative procedure that relies on the expectation-maximization algorithm and that uses standard statistical software for the maximization steps. Simulations reveal that LRT tests for detection of imprinting have very good operating characteristics. When a single allele is under study, the proposed method can yield powerful tests for detection of linkage disequilibrium and is applicable to a broader array of causal scenarios than is the TDT.

Journal ArticleDOI
TL;DR: It is demonstrated that the cDNA that is identified encodes the human sterol Delta7-reductase and that mutations in DHCR7 are responsible for at least some cases of SLOS.
Abstract: Summary The Smith-Lemli-Opitz syndrome (SLOS; also known as “RSH syndrome” [MIM 270400]) is an autosomal recessive multiple malformation syndrome due to a defect in cholesterol biosynthesis. Children with SLOS have elevated serum 7-dehydrocholesterol (7-DHC) levels and typically have low serum cholesterol levels. On the basis of this biochemical abnormality, it has been proposed that mutations in the human sterol D 7 -reductase (7-DHC reductase; E.C.1.3.1.21) gene cause SLOS. However, one could also propose a defect in a gene that encodes a protein necessary for either the expression or normal function of sterol D 7 -reductase. We cloned cDNA encoding a human sterol D 7 -reductase (DHCR7) on the basis of its homology with the sterol D 7 -reductase from Arabidopsis thaliana, and we confirmed the enzymatic function of the human gene product by expression in SLOS fibroblasts. SLOS fibroblasts transfected with human sterol D 7 -reductase cDNA showed a significant reduction in 7-DHC levels, compared with those in SLOS fibroblasts transfected with the vector alone. Using radiation-hybrid mapping, we show that the DHCR7 gene is encoded at chromosome 11q12-13. To establish that defects in this gene cause SLOS, we sequenced cDNA clones from SLOS patients. In three unrelated patients we have identified four different mutant alleles. Our results demonstrate both that the cDNA that we have identified encodes the human sterol D 7 -reductase and that

Journal ArticleDOI
TL;DR: It does not follow that the usual measures of linkage disequilibrium are zero, but care is needed in the drawing of inferences from marker Hardy-Weinberg disequilibria for disease-susceptibility loci with more than two alleles.
Abstract: We review and extend a recent suggestion that fine-scale localization of a disease-susceptibility locus for a complex disease be done on the basis of deviations from Hardy-Weinberg equilibrium among affected individuals. This deviation is driven by linkage disequilibrium between disease and marker loci in the whole population and requires a heterogeneous genetic basis for the disease. A finding of marker-locus Hardy-Weinberg disequilibrium therefore implies disease heterogeneity and marker-disease linkage disequilibrium. Although a lack of departure of Hardy-Weinberg disequilibrium at marker loci implies that disease susceptibilityweighted linkage disequilibria are zero, given disease heterogeneity, it does not follow that the usual measures of linkage disequilibrium are zero. For disease-susceptibility loci with more than two alleles, therefore, care is needed in the drawing of inferences from marker Hardy-Weinberg disequilibria.

Journal ArticleDOI
TL;DR: A spectrum of 59 ATM mutations observed in ataxia-telangiectasia (A-T) patients in the British Isles is reported, and an ATM mutation (7271T-->G) that may be associated with an increased risk of breast cancer in both homozygotes and heterozygotes is reported.
Abstract: Summary We report the spectrum of 59 ATM mutations observed in ataxia-telangiectasia (A-T) patients in the British Isles Of 51 ATM mutations identified in families native to the British Isles, 11 were founder mutations, and 2 of these 11 conferred a milder clinical phenotype with respect to both cerebellar degeneration and cellular features We report, in two A-T families, an ATM mutation (7271T→G) that may be associated with an increased risk of breast cancer in both homozygotes and heterozygotes (relative risk 127; P =0025), although there is a less severe A-T phenotype in terms of the degree of cerebellar degeneration This mutation (7271T→G) also allows expression of full-length ATM protein at a level comparable with that in unaffected individuals In addition, we have studied 18 A-T patients, in 15 families, who developed leukemia, lymphoma, preleukemic T-cell proliferation, or Hodgkin lymphoma, mostly in childhood A wide variety of ATM mutation types, including missense mutations and in-frame deletions, were seen in these patients We also show that 25% of all A-T patients carried in-frame deletions or missense mutations, many of which were also associated with expression of mutant ATM protein

Journal ArticleDOI
TL;DR: Using cloned repeat sequences from FRDA patients, it is shown that the GAA repeat per se interferes with in vitro transcription in a length-dependent manner, with both prokaryotic and eukaryotic enzymes.
Abstract: Friedreich ataxia (FRDA), an autosomal recessive, neurodegenerative disease is the most common inherited ataxia. The vast majority of patients are homozygous for an abnormal expansion of a polymorphic GAA triplet repeat in the first intron of the X25 gene, which encodes a mitochondrial protein, frataxin. Cellular degeneration in FRDA may be caused by mitochondrial dysfunction, possibly due to abnormal iron accumulation, as observed in yeast cells deficient for a frataxin homologue. Using RNase protection assays, we have shown that patients homozygous for the expansion have a marked deficiency of mature X25 mRNA. The mechanism(s) by which the intronic GAA triplet expansion results in this reduction of X25 mRNA is presently unknown. No evidence was found for abnormal splicing of the expanded intron 1. Using cloned repeat sequences from FRDA patients, we show that the GAA repeat per se interferes with in vitro transcription in a length-dependent manner, with both prokaryotic and eukaryotic enzymes. This interference was most pronounced in the physiological orientation of transcription, when synthesis of the GAA-rich transcript was attempted. These results are consistent with the observed negative correlation between triplet-repeat length and the age at onset of disease. Using in vitro chemical probing strategies, we also show that the GAA triplet repeat adopts an unusual DNA structure, demonstrated by hyperreactivity to osmium tetroxide, hydroxylamine, and diethyl pyrocarbonate. These results raise the possibility that the GAA triplet-repeat expansion may result in an unusual yet stable DNA structure that interferes with transcription, ultimately leading to a cellular deficiency of frataxin.

Journal ArticleDOI
TL;DR: Use of the multiallelic transmission-disequilibrium test (MTDT), for nine loci on 15q11-13, revealed linkage disequilibrium between autistic disorder and a marker in the gamma-aminobutyric acidA receptor subunit gene, GABRB3 155CA-2, suggesting the need for further investigation of the role of GAB RB3 or adjacent genes in autistic disorder.
Abstract: Summary Autistic disorder is a complex genetic disease. Because of previous reports of individuals with autistic disorder with duplications of the Prader-Willi/Angelman syndrome critical region, we screened several markers across the 15q11-13 region, for linkage disequilibrium. One hundred forty families, consisting predominantly of a child with autistic disorder and both parents, were studied. Genotyping was performed by use of multiplex PCR and capillary electrophoresis. Two children were identified who had interstitial chromosome 15 duplications and were excluded from further linkage-disequilibrium analysis. Use of the multiallelic transmission-disequilibrium test (MTDT), for nine loci on 15q11-13, revealed linkage disequilibrium between autistic disorder and a marker in the γ-aminobutyric acid A receptor subunit gene, GABRB3 155CA-2 (MTDT 28.63, 10 df, P =.0014). No evidence was found for parent-of-origin effects on allelic transmission. The convergence of GABRB3 as a positional and functional candidate along with the linkage-disequilibrium data suggests the need for further investigation of the role of GABRB3 or adjacent genes in autistic disorder.

Journal ArticleDOI
TL;DR: These studies provide the first direct evidence that GJA8 plays a vital role in the maintenance of human lens transparency and identify the genetic defect believed to underlie the first inherited disease to be linked to a human autosome.
Abstract: CZP1, a locus for autosomal dominant "zonular pulverulent" cataract, previously had been linked with the Duffy blood-group-antigen locus on chromosome 1q. Here we report genetic refinement of the CZP1 locus and show that the underlying mutation is present in GJA8, the gene for connexin50. To map the CZP1 locus we performed linkage analysis using microsatellite markers on two distantly related branches of the original Ev. pedigree, which now spans eight generations. Significantly positive two-point LOD score (Z) values were obtained for markers D1S2669 (maximum Z [Zmax] = 4.52; maximum recombination frequency [thetamax] = 0) and D1S514 (Zmax = 4.48; thetamax = 0). Multipoint analysis gave Zmax = 5.22 (thetamax = 0) at marker D1S2669. Haplotyping indicated that CZP1 probably lies in the genetic interval D1S2746-(20.6 cM)-D1S2771. Sequence analysis of the entire protein-coding region of the GJA8 gene from the pedigree detected a C-->T transition in codon 88, which introduced a novel MnlI restriction-enzyme site that also cosegregated with the cataract. This missense mutation is predicted to result in the nonconservative substitution of serine for a phylogenetically conserved proline (P88S). These studies provide the first direct evidence that GJA8 plays a vital role in the maintenance of human lens transparency and identify the genetic defect believed to underlie the first inherited disease to be linked to a human autosome.

Journal ArticleDOI
TL;DR: The high prevalence of the common MELAS mutation in the adult population suggests that mitochondrial disorders constitute one of the largest diagnostic categories of neurogenetic diseases.
Abstract: Mitochondrial diseases are characterized by considerable clinical variability and are most often caused by mutations in mtDNA. Because of the phenotypic variability, epidemiological studies of the frequency of these disorders have been difficult to perform. We studied the prevalence of the mtDNA mutation at nucleotide 3243 in an adult population of 245,201 individuals. This mutation is the most common molecular etiology of MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes), one of the clinical entities among the mitochondrial disorders. Patients with diabetes mellitus, sensorineural hearing impairment, epilepsy, occipital brain infarct, ophthalmoplegia, cerebral white-matter disease, basal-ganglia calcifications, hypertrophic cardiomyopathy, or ataxia were ascertained on the basis of defined clinical criteria and family-history data. A total of 615 patients were identified, and 480 samples were examined for the mutation. The mutation was found in 11 pedigrees, and its frequency was calculated to be >=16. 3/100,000 in the adult population (95% confidence interval 11.3-21. 4/100,000). The mutation had arisen in the population at least nine times, as determined by mtDNA haplotyping. Clinical evaluation of the probands revealed a syndrome that most frequently consisted of hearing impairment, cognitive decline, and short stature. The high prevalence of the common MELAS mutation in the adult population suggests that mitochondrial disorders constitute one of the largest diagnostic categories of neurogenetic diseases.

Journal ArticleDOI
TL;DR: There is genetic predisposition associated with >=10% of all cancer of the prostate (CaP) by means of a genomewide search on a selection of 47 French and German families, parametric and nonparametric linkage (NPL) analysis allowed identification of a locus carrying a putative predisposing gene for CaP (PCaP).
Abstract: Summary There is genetic predisposition associated with ⩾10% of all cancer of the prostate (CaP). By means of a genomewide search on a selection of 47 French and German families, parametric and nonparametric linkage (NPL) analysis allowed identification of a locus, on chromosome 1q42.2-43, carrying a putative predisposing gene for CaP (PCaP). The primary localization was confirmed with several markers, by use of three different genetic models. We obtained a maximum two-point LOD score of 2.7 with marker D1S2785. Multipoint parametric and NPL analysis yielded maximum HLOD and NPL scores of 2.2 and 3.1, respectively, with an associated P value of .001. Homogeneity analysis with multipoint LOD scores gave an estimate of the proportion of families with linkage to this locus of 50%, with a likelihood ratio of 157/1 in favor of heterogeneity. Furthermore, the 9/47 families with early-onset CaP at age P = .001.