scispace - formally typeset
Search or ask a question

Showing papers in "American Journal of Human Genetics in 2000"


Journal ArticleDOI
TL;DR: This article describes a novel, statistically valid, method for case-control association studies in structured populations that uses a set of unlinked genetic markers to infer details of population structure, and to estimate the ancestry of sampled individuals, before using this information to test for associations within subpopulations.
Abstract: The use, in association studies, of the forthcoming dense genomewide collection of single-nucleotide polymorphisms (SNPs) has been heralded as a potential breakthrough in the study of the genetic basis of common complex disorders. A serious problem with association mapping is that population structure can lead to spurious associations between a candidate marker and a phenotype. One common solution has been to abandon case-control studies in favor of family-based tests of association, such as the transmission/disequilibrium test (TDT), but this comes at a considerable cost in the need to collect DNA from close relatives of affected individuals. In this article we describe a novel, statistically valid, method for case-control association studies in structured populations. Our method uses a set of unlinked genetic markers to infer details of population structure, and to estimate the ancestry of sampled individuals, before using this information to test for associations within subpopulations. It provides power comparable with the TDT in many settings and may substantially outperform it if there are conflicting associations in different subpopulations.

1,904 citations


Journal ArticleDOI
TL;DR: A general approach that can accommodate nuclear families of any size, with or without parental information, is constructed, and it is shown that, when siblings are available, the total number of genotypes required in order to achieve comparable power is smaller if parents are not genotyped.
Abstract: High-resolution mapping is an important step in the identification of complex disease genes. In outbred populations, linkage disequilibrium is expected to operate over short distances and could provide a powerful fine-mapping tool. Here we build on recently developed methods for linkage-disequilibrium mapping of quantitative traits to construct a general approach that can accommodate nuclear families of any size, with or without parental information. Variance components are used to construct a test that utilizes information from all available offspring but that is not biased in the presence of linkage or familiality. A permutation test is described for situations in which maximum-likelihood estimates of the variance components are biased. Simulation studies are used to investigate power and error rates of this approach and to highlight situations in which violations of multivariate normality assumptions warrant the permutation test. The relationship between power and the level of linkage disequilibrium for this test suggests that the method is well suited to the analysis of dense maps. The relationship between power and family structure is investigated, and these results are applicable to study design in complex disease, especially for late-onset conditions for which parents are usually not available. When parental genotypes are available, power does not depend greatly on the number of offspring in each family. Power decreases when parental genotypes are not available, but the loss in power is negligible when four or more offspring per family are genotyped. Finally, it is shown that, when siblings are available, the total number of genotypes required in order to achieve comparable power is smaller if parents are not genotyped.

1,173 citations


Journal ArticleDOI
TL;DR: The findings indicate that the bone morphogenetic protein-signaling pathway is defective in patients with primary pulmonary hypertension and may implicate the pathway in the nonfamilial forms of the disease.
Abstract: Familial primary pulmonary hypertension is a rare autosomal dominant disorder that has reduced penetrance and that has been mapped to a 3-cM region on chromosome 2q33 (locus PPH1). The phenotype is characterized by monoclonal plexiform lesions of proliferating endothelial cells in pulmonary arterioles. These lesions lead to elevated pulmonary-artery pressures, right-ventricular failure, and death. Although primary pulmonary hypertension is rare, cases secondary to known etiologies are more common and include those associated with the appetite-suppressant drugs, including phentermine-fenfluramine. We genotyped 35 multiplex families with the disorder, using 27 microsatellite markers; we constructed disease haplotypes; and we looked for evidence of haplotype sharing across families, using the program TRANSMIT. Suggestive evidence of sharing was observed with markers GGAA19e07 and D2S307, and three nearby candidate genes were examined by denaturing high-performance liquid chromatography on individuals from 19 families. One of these genes (BMPR2), which encodes bone morphogenetic protein receptor type II, was found to contain five mutations that predict premature termination of the protein product and two missense mutations. These mutations were not observed in 196 control chromosomes. These findings indicate that the bone morphogenetic protein–signaling pathway is defective in patients with primary pulmonary hypertension and may implicate the pathway in the nonfamilial forms of the disease.

1,141 citations


Journal ArticleDOI
TL;DR: There has been substantial back-migration into the Near East, there was a founder effect or bottleneck associated with the Last Glacial Maximum, 20,000 years ago, and a way to account for multiple dispersals of common sequence types is suggested.
Abstract: Founder analysis is a method for analysis of nonrecombining DNA sequence data, with the aim of identification and dating of migrations into new territory. The method picks out founder sequence types in potential source populations and dates lineage clusters deriving from them in the settlement zone of interest. Here, using mtDNA, we apply the approach to the colonization of Europe, to estimate the proportion of modern lineages whose ancestors arrived during each major phase of settlement. To estimate the Palaeolithic and Neolithic contributions to European mtDNA diversity more accurately than was previously achievable, we have now extended the Near Eastern, European, and northern-Caucasus databases to 1,234, 2,804, and 208 samples, respectively. Both back-migration into the source population and recurrent mutation in the source and derived populations represent major obstacles to this approach. We have developed phylogenetic criteria to take account of both these factors, and we suggest a way to account for multiple dispersals of common sequence types. We conclude that (i) there has been substantial back-migration into the Near East, (ii) the majority of extant mtDNA lineages entered Europe in several waves during the Upper Palaeolithic, (iii) there was a founder effect or bottleneck associated with the Last Glacial Maximum, 20,000 years ago, from which derives the largest fraction of surviving lineages, and (iv) the immigrant Neolithic component is likely to comprise less than one-quarter of the mtDNA pool of modern Europeans.

965 citations


Journal ArticleDOI
TL;DR: Current results support a mechanism of involvement in premutation carriers, in which reduced translational efficiency is at least partially compensated through increased transcriptional activity in the full-mutation range as the FMR1 gene is silenced.
Abstract: Summary Fragile-X syndrome is a trinucleotide-repeat–expansion disorder in which the clinical phenotype is believed to result from transcriptional silencing of the fragile-X mental retardation 1 ( FMR1 ) gene as the number of CGG repeats exceeds ∼200. For premutation alleles (∼55–200 repeats), no abnormalities in FMR1 -gene expression have been described, despite growing evidence of clinical involvement in premutation carriers. To address this (apparent) paradox, we have determined, for 16 carrier males (55–192 repeats), the relative levels of leukocyte FMR1 mRNA, by use of automated fluorescence-detection reverse transcriptase–PCR, and the percent of lymphocytes that are immunoreactive for FMR1 protein (FMRP). For some alleles with >100 repeats, there was a reduction in the number of FMRP-positive cells. Unexpectedly, FMR1 mRNA levels were elevated at least fivefold within this same range. No significant increase in FMR1 mRNA stability was observed in a lymphoblastoid cell line (160 repeats) derived from one of the carrier males, suggesting that the increased message levels are due to an increased rate of transcription. Current results support a mechanism of involvement in premutation carriers, in which reduced translational efficiency is at least partially compensated through increased transcriptional activity. Thus, diminished translational efficiency may be important throughout much of the premutation range, with a mechanistic switch occurring in the full-mutation range as the FMR1 gene is silenced.

731 citations


Journal ArticleDOI
TL;DR: Evidence for a novel susceptibility locus for type 2 diabetes in French whites on chromosome 3q27-qter is shown and the previously reported diabetes-susceptibility locus on chromosome 1q21-q24 is confirmed.
Abstract: Despite recent advances in the molecular genetics of type 2 diabetes, the majority of susceptibility genes in humans remain to be identified. We therefore conducted a 10-cM genomewide search (401 microsatellite markers) for type 2 diabetes–related traits in 637 members of 143 French pedigrees ascertained through multiple diabetic siblings, to map such genes in the white population. Nonparametric two-point and multipoint linkage analyzes—using the MAPMAKER-SIBS (MLS) and MAXIMUM-BINOMIAL-LIKELIHOOD (MLB) programs for autosomal markers and the ASPEX program for chromosome X markers—were performed with six diabetic phenotypes: diabetes and diabetes or glucose intolerance (GI), as well as with each of the two phenotypes associated with normal body weight (body-mass index 2 ) or early age at diagnosis ( D3S1580 locus on chromosome 3q27-qter using MAPMAKER-SIBS (MLS = 4.67, P =.000004), supported by the MLB statistic ( MLB-LOD =3.43, P =.00003). We also found suggestive linkage between the lean diabetic status and markers APOA2 – D1S484 (MLS = 3.04, P =.00018; MLB-LOD =2.99, P =.00010) on chromosome 1q21-q24. Several other chromosomal regions showed indication of linkage with diabetic traits, including markers on chromosome 2p21-p16, 10q26, 20p, and 20q. These results ( a ) showed evidence for a novel susceptibility locus for type 2 diabetes in French whites on chromosome 3q27-qter and ( b ) confirmed the previously reported diabetes-susceptibility locus on chromosome 1q21-q24. Saturation on both chromosomes narrowed the regions of interest down to an interval of

699 citations


Journal ArticleDOI
TL;DR: The mtDNA pool of present-day Brazilians clearly reflects the imprints of the early Portuguese colonization process (involving directional mating), as well as the recent immigrant waves (from Europe) of the last century.
Abstract: We have analyzed 247 Brazilian mtDNAs for hypervariable segment (HVS)–I and selected restriction fragment-length–polymorphism sites, to assess their ancestry in different continents. The total sample showed nearly equal amounts of Native American, African, and European matrilineal genetic contribution but with regional differences within Brazil. The mtDNA pool of present-day Brazilians clearly reflects the imprints of the early Portuguese colonization process (involving directional mating), as well as the recent immigrant waves (from Europe) of the last century. The subset of 99 mtDNAs from the southeastern region encompasses nearly all mtDNA haplogroups observed in the total Brazilian sample; for this regional subset, HVS-II was analyzed, providing, in particular, some novel details of the African mtDNA phylogeny.

650 citations


Journal ArticleDOI
TL;DR: FoxC2 represents the second known gene to result in hereditary lymphedema, and LD is only the second hereditary disorder known to be caused by a mutation in a forkhead-family gene, and FOXC2 haploinsufficiency results in LD.
Abstract: Lymphedema-distichiasis (LD) is an autosomal dominant disorder that classically presents as lymphedema of the limbs, with variable age at onset, and double rows of eyelashes (distichiasis). Other complications may include cardiac defects, cleft palate, extradural cysts, and photophobia, suggesting a defect in a gene with pleiotrophic effects acting during development. We previously reported neonatal lymphedema, similar to that in Turner syndrome, associated with a t(Y;16)(q12;q24.3) translocation. A candidate gene was not found on the Y chromosome, and we directed our efforts toward the chromosome 16 breakpoint. Subsequently, a gene for LD was mapped, by linkage studies, to a 16-cM region at 16q24.3. By FISH, we determined that the translocation breakpoint was within this critical region and further narrowed the breakpoint to a 20-kb interval. Because the translocation did not appear to interrupt a gene, we considered candidate genes in the immediate region that might be inactivated by position effect. In two additional unrelated families with LD, we identified inactivating mutations—a nonsense mutation and a frameshift mutation—in the FOXC2 (MFH-1) gene. FOXC2 is a member of the forkhead/winged-helix family of transcription factors, whose members are involved in diverse developmental pathways. FOXC2 knockout mice display cardiovascular, craniofacial, and vertebral abnormalities similar to those seen in LD syndrome. Our findings show that FOXC2 haploinsufficiency results in LD. FOXC2 represents the second known gene to result in hereditary lymphedema, and LD is only the second hereditary disorder known to be caused by a mutation in a forkhead-family gene.

577 citations


Journal ArticleDOI
TL;DR: These patterns retain a strong signal of expansion from the Near East but also suggest that the demographic history of Europe has been complex and influenced by other major population movements, as well as by linguistic and geographic heterogeneities and the effects of drift.
Abstract: Clinal patterns of autosomal genetic diversity within Europe have been interpreted in previous studies in terms of a Neolithic demic diffusion model for the spread of agriculture; in contrast, studies using mtDNA have traced many founding lineages to the Paleolithic and have not shown strongly clinal variation. We have used 11 human Y-chromosomal biallelic polymorphisms, defining 10 haplogroups, to analyze a sample of 3,616 Y chromosomes belonging to 47 European and circum-European populations. Patterns of geographic differentiation are highly nonrandom, and, when they are assessed using spatial autocorrelation analysis, they show significant clines for five of six haplogroups analyzed. Clines for two haplogroups, representing 45% of the chromosomes, are continentwide and consistent with the demic diffusion hypothesis. Clines for three other haplogroups each have different foci and are more regionally restricted and are likely to reflect distinct population movements, including one from north of the Black Sea. Principal-components analysis suggests that populations are related primarily on the basis of geography, rather than on the basis of linguistic affinity. This is confirmed in Mantel tests, which show a strong and highly significant partial correlation between genetics and geography but a low, nonsignificant partial correlation between genetics and language. Genetic-barrier analysis also indicates the primacy of geography in the shaping of patterns of variation. These patterns retain a strong signal of expansion from the Near East but also suggest that the demographic history of Europe has been complex and influenced by other major population movements, as well as by linguistic and geographic heterogeneities and the effects of drift.

576 citations


Journal ArticleDOI
TL;DR: The findings suggest that the large size of a (GT)n repeat in the HO-1 gene promoter may reduceHO-1 inducibility by reactive oxygen species in cigarette smoke, thereby resulting in the development of CPE.
Abstract: Cigarette smoke, containing reactive oxygen species, is the most important risk factor for chronic pulmonary emphysema (CPE). Heme oxygenase-1 (HO-1) plays a protective role as an antioxidant in the lung. A (GT)n dinucleotide repeat in the 5′-flanking region of human HO-1 gene shows length polymorphism and could modulate the level of gene transcription. To investigate the correlation between the length of the (GT)n repeat and susceptibility to the development of CPE, we screened the frequencies of alleles with varying numbers of (GT)n repeats in the HO-1 gene in 101 smokers with CPE and in 100 smokers without CPE. Polymorphisms of the (GT)n repeat were grouped into three classes: class S alleles (<25 repeats), class M alleles (25–29 repeats), and class L alleles (⩾30 repeats). The proportion of allele frequencies in class L, as well as the proportion of genotypic frequencies in the group with class L alleles (L/L, L/M, and L/S), was significantly higher in the smokers with CPE than in smokers without CPE. Moreover, we analyzed the promoter activities of the HO-1 gene carrying different (GT)n repeats (n=16, 20, 29, and 38), by transient-transfection assay in cultured cell lines. H2O2 exposure up-regulated the transcriptional activity of the HO-1 promoter/luciferase fusion genes with (GT)16 or (GT)20 but did not do so with (GT)29 or (GT)38. These findings suggest that the large size of a (GT)n repeat in the HO-1 gene promoter may reduce HO-1 inducibility by reactive oxygen species in cigarette smoke, thereby resulting in the development of CPE.

570 citations


Journal ArticleDOI
TL;DR: A genomewide scan in 158 Canadian sib-pair families identified three regions of suggestive linkage and one region of significant linkage to 19p13 that contributes to CD susceptibility in families with early-onset disease.
Abstract: The chronic inflammatory bowel diseases (IBDs)-Crohn disease (CD) and ulcerative colitis (UC)-are idiopathic, inflammatory disorders of the gastrointestinal tract. These conditions have a peak incidence in early adulthood and a combined prevalence of approximately 100-200/100,000. Although the etiology of IBD is multifactorial, a significant genetic contribution to disease susceptibility is implied by epidemiological data revealing a sibling risk of approximately 35-fold for CD and approximately 15-fold for UC. To elucidate the genetic basis for these disorders, we undertook a genomewide scan in 158 Canadian sib-pair families and identified three regions of suggestive linkage (3p, 5q31-33, and 6p) and one region of significant linkage to 19p13 (LOD score 4.6). Higher-density mapping in the 5q31-q33 region revealed a locus of genomewide significance (LOD score 3.9) that contributes to CD susceptibility in families with early-onset disease. Both of these genomic regions contain numerous genes that are important to the immune and inflammatory systems and that provide good targets for future candidate-gene studies.

Journal ArticleDOI
TL;DR: Analysis of worldwide genetic variation among 255 individuals by using autosomal, mitochondrial, and Y-chromosome polymorphisms reveals substantial congruity among this diverse array of genetic systems and offers broad support for an African origin of modern human populations.
Abstract: We report a comparison of worldwide genetic variation among 255 individuals by using autosomal, mitochondrial, and Y-chromosome polymorphisms. Variation is assessed by use of 30 autosomal restriction-site polymorphisms (RSPs), 60 autosomal short-tandem-repeat polymorphisms (STRPs), 13 Alu-insertion polymorphisms and one LINE-1 element, 611 bp of mitochondrial control-region sequence, and 10 Y-chromosome polymorphisms. Analysis of these data reveals substantial congruity among this diverse array of genetic systems. With the exception of the autosomal RSPs, in which an ascertainment bias exists, all systems show greater gene diversity in Africans than in either Europeans or Asians. Africans also have the largest total number of alleles, as well as the largest number of unique alleles, for most systems. GST values are 11%–18% for the autosomal systems and are two to three times higher for the mtDNA sequence and Y-chromosome RSPs. This difference is expected because of the lower effective population size of mtDNA and Y chromosomes. A lower value is seen for Y-chromosome STRs, reflecting a relative lack of continental population structure, as a result of rapid mutation and genetic drift. Africa has higher GST values than does either Europe or Asia for all systems except the Y-chromosome STRs and Alus. All systems except the Y-chromosome STRs show less variation between populations within continents than between continents. These results are reassuring in their consistency and offer broad support for an African origin of modern human populations.

Journal ArticleDOI
TL;DR: It is concluded that the effect that MC1R variant alleles have on CMM is partly mediated via determination of pigmentation phenotype and that these alleles may also negate the protection normally afforded by darker skin coloring in some members of this white population.
Abstract: Risk of cutaneous malignant melanoma (CMM) is increased in sun-exposed whites, particularly those with a pale complexion. This study was designed to investigate the relationship of the melanocortin-1 receptor (MC1R) genotype to CMM risk, controlled for pigmentation phenotype. We report the occurrence of five common MC1R variants in an Australian population-based sample of 460 individuals with familial and sporadic CMM and 399 control individuals—and their relationship to such other risk factors as skin, hair, and eye color; freckling; and nevus count. There was a strong relationship between MC1R variants and hair color and skin type. Moreover, MC1R variants were found in 72% of the individuals with CMM, whereas only 56% of the control individuals carried at least one variant (P<.001), a finding independent of strength of family history of melanoma. Three active alleles (Arg151Cys, Arg160Trp, and Asp294His), previously associated with red hair, doubled CMM risk for each additional allele carried (odds ratio 2.0; 95% confidence interval 1.6–2.6). No such independent association could be demonstrated with the Val60Leu and Asp84Glu variants. Among pale-skinned individuals alone, this association between CMM and MC1R variants was absent, but it persisted among those reporting a medium or olive/dark complexion. We conclude that the effect that MC1R variant alleles have on CMM is partly mediated via determination of pigmentation phenotype and that these alleles may also negate the protection normally afforded by darker skin coloring in some members of this white population.

Journal ArticleDOI
TL;DR: The data are in agreement with the view that the present Greenland Eskimos essentially descend from Alaskan Neo-Eskimos, and major mtDNA types shared between Na Dene and Eskimo are demonstrated.
Abstract: The Eskimo-Aleut language phylum is distributed from coastal Siberia across Alaska and Canada to Greenland and is well distinguished from the neighboring Na Dene languages. Genetically, however, the distinction between Na Dene and Eskimo-Aleut speakers is less clear. In order to improve the genetic characterization of Eskimos in general and Greenlanders in particular, we have sequenced hypervariable segment I (HVS-I) of the mitochondrial DNA (mtDNA) control region and typed relevant RFLP sites in the mtDNA of 82 Eskimos from Greenland. A comparison of our data with published sequences demonstrates major mtDNA types shared between Na Dene and Eskimo, indicating a common Beringian history within the Holocene. We further confirm the presence of an Eskimo-specific mtDNA subgroup characterized by nucleotide position 16265G within mtDNA group A2. This subgroup is found in all Eskimo groups analyzed so far and is estimated to have originated

Journal ArticleDOI
TL;DR: An extensive analysis of the distribution of mtDNA haplogroups in white men having fertility problems has found that asthenozoospermia, but not oligozoos spermia, is associated with mt DNA haploggroups in whites, and haplog groups H and T are significantly more abundant in nonasthenozoespermic and asthenazooospermic populations, respectively.
Abstract: A variety of mtDNA mutations responsible for human diseases have been associated with molecular defects in the OXPHOS system. It has been proposed that mtDNA genetic alterations can also be responsible for sperm dysfunction. In addition, it was suggested that if sperm dysfunction is the main phenotypic consequence, these mutations could be fixed as stable mtDNA variants, because mtDNA is maternally inherited. To test this possibility, we have performed an extensive analysis of the distribution of mtDNA haplogroups in white men having fertility problems. We have found that asthenozoospermia, but not oligozoospermia, is associated with mtDNA haplogroups in whites. Thus, haplogroups H and T are significantly more abundant in nonasthenozoospermic and asthenozoospermic populations, respectively, and show significant differences in their OXPHOS performance.

Journal ArticleDOI
TL;DR: A new X-linked recessive immunodeficiency syndrome is defined, distinct from other types of HED and immunODeficiency syndromes, and the data provide further evidence that the development of ectodermal appendages is mediated through a tumor necrosis factor/tumor necrosis factors receptor-like signaling pathway, with the IKK signalsome complex playing a significant role.
Abstract: Hypohidrotic ectodermal dysplasia (HED), a congenital disorder of teeth, hair, and eccrine sweat glands, is usually inherited as an X-linked recessive trait, although rarer autosomal dominant and recessive forms exist. We have studied males from four families with HED and immunodeficiency (HED-ID), in which the disorder segregates as an X-linked recessive trait. Affected males manifest dysgammaglobulinemia and, despite therapy, have significant morbidity and mortality from recurrent infections. Recently, mutations in IKK-gamma (NEMO) have been shown to cause familial incontinentia pigmenti (IP). Unlike HED-ID, IP affects females and, with few exceptions, causes male prenatal lethality. IKK-gamma is required for the activation of the transcription factor known as “nuclear factor kappa B” and plays an important role in T and B cell function. We hypothesize that “milder” mutations at this locus may cause HED-ID. In all four families, sequence analysis reveals exon 10 mutations affecting the carboxy-terminal end of the IKK-gamma protein, a domain believed to connect the IKK signalsome complex to upstream activators. The findings define a new X-linked recessive immunodeficiency syndrome, distinct from other types of HED and immunodeficiency syndromes. The data provide further evidence that the development of ectodermal appendages is mediated through a tumor necrosis factor/tumor necrosis factor receptor–like signaling pathway, with the IKK signalsome complex playing a significant role.

Journal ArticleDOI
TL;DR: In this article, the authors consider and explore sources of error between EM-derived haplotype frequency estimates and their population parameters, noting that much of this error is due to sampling error, which is inherent in all studies.
Abstract: Haplotype analyses have become increasingly common in genetic studies of human disease because of their ability to identify unique chromosomal segments likely to harbor disease-predisposing genes. The study of haplotypes is also used to investigate many population processes, such as migration and immigration rates, linkage-disequilibrium strength, and the relatedness of populations. Unfortunately, many haplotype-analysis methods require phase information that can be difficult to obtain from samples of nonhaploid species. There are, however, strategies for estimating haplotype frequencies from unphased diploid genotype data collected on a sample of individuals that make use of the expectation-maximization (EM) algorithm to overcome the missing phase information. The accuracy of such strategies, compared with other phase-determination methods, must be assessed before their use can be advocated. In this study, we consider and explore sources of error between EM-derived haplotype frequency estimates and their population parameters, noting that much of this error is due to sampling error, which is inherent in all studies, even when phase can be determined. In light of this, we focus on the additional error between haplotype frequencies within a sample data set and EM-derived haplotype frequency estimates incurred by the estimation procedure. We assess the accuracy of haplotype frequency estimation as a function of a number of factors, including sample size, number of loci studied, allele frequencies, and locus-specific allelic departures from Hardy-Weinberg and linkage equilibrium. We point out the relative impacts of sampling error and estimation error, calling attention to the pronounced accuracy of EM estimates once sampling error has been accounted for. We also suggest that many factors that may influence accuracy can be assessed empirically within a data set—a fact that can be used to create “diagnostics” that a user can turn to for assessing potential inaccuracies in estimation.

Journal ArticleDOI
TL;DR: One of the firmly held concepts in human molecular genetics has been that, if the details of specific genetic mutations and their effects on protein products are understood, the authors will be better able to correlate genotype with phenotype.
Abstract: One of the firmly held concepts in human molecular genetics has been that, if we can understand the details of specific genetic mutations and their effects on protein products, we will be better able to correlate genotype with phenotype. One of the promises of this concept is that such a knowledge base will move clinical genetics into a predictive mode: knowledge of the mutant alleles responsible for a disease would permit an accurate prediction of the prognosis and a better-informed selection among therapeutic strategies for any individual patient.

Journal ArticleDOI
TL;DR: Screening of affected family members for mutations in the NF-L gene and in the tightly linked neurofilament-medium gene (NF-M) revealed the only DNA alteration linked with the disease: a A998C transversion in the first exon ofNF-L, which converts a conserved Gln333 amino acid to proline.
Abstract: Charcot-Marie-Tooth (CMT) disease is the most common inherited motor and sensory neuropathy. The axonal form of the disease is designated as “CMT type 2” (CMT2). Although four loci known to be implicated in autosomal dominant CMT2 have been mapped thus far (on 1p35-p36, 3q13.1, 3q13-q22, and 7p14), no one causative gene is yet known. A large Russian family with CMT2 was found in the Mordovian Republic (Russia). Affected members had the typical CMT2 phenotype. Additionally, several patients suffered from hyperkeratosis, although the association, if any, between the two disorders is not clear. Linkage with the CMT loci already known (CMT1A, CMT1B, CMT2A, CMT2B, CMT2D, and a number of other CMT-related loci) was excluded. Genomewide screening pinpointed the disease locus in this family to chromosome 8p21, within a 16-cM interval between markers D8S136 and D8S1769. A maximum two-point LOD score of 5.93 was yielded by a microsatellite from the 5′ region of the neurofilament-light gene (NF-L). Neurofilament proteins play an important role in axonal structure and are implicated in several neuronal disorders. Screening of affected family members for mutations in the NF-L gene and in the tightly linked neurofilament-medium gene (NF-M) revealed the only DNA alteration linked with the disease: a A998C transversion in the first exon of NF-L, which converts a conserved Gln333 amino acid to proline. This alteration was not found in 180 normal chromosomes. Twenty unrelated CMT2 patients, as well as 26 others with an undetermined form of CMT, also were screened for mutations in NF-L, but no additional mutations were found. It is suggested that Gln333Pro represents a rare disease-causing mutation, which results in the CMT2 phenotype.

Journal ArticleDOI
TL;DR: The data indicate that the general mutational mechanism of microsatellites is independent of recombination, and mutation rates and characteristics of human Y-chromosomal microsatellite loci are consistent with those of autosomal microSatellites.
Abstract: A number of applications of analysis of human Y-chromosome microsatellite loci to human evolution and forensic science require reliable estimates of the mutation rate and knowledge of the mutational mechanism. We therefore screened a total of 4,999 meioses from father/son pairs with confirmed paternity (probability >99.9%) at 15 Ychromosomal microsatellite loci and identified 14 mutations. The locus-specific mutation-rate estimates were , and the average mutation rate estimates were (95% confidence interval [CI]

Journal ArticleDOI
TL;DR: In this article, an autosomal dominant, congenital form of the disease, also known as "Milroy disease", has been mapped to the telomeric part of chromosome 5q, in the region 5q34-q35.
Abstract: Hereditary lymphedema is a chronic swelling of limbs due to dysfunction of lymphatic vessels. An autosomal dominant, congenital form of the disease, also known as "Milroy disease," has been mapped to the telomeric part of chromosome 5q, in the region 5q34-q35. This region contains a good candidate gene for the disease, VEGFR3 (FLT4), that encodes a receptor tyrosine kinase specific for lymphatic vessels. To clarify the role of VEGFR3 in the etiology of the disease, we have analyzed a family with hereditary lymphedema. We show linkage of the disease with markers in 5q34-q35, including a VEGFR3 intragenic polymorphism, and we describe an A-->G transition that cosegregates with the disease, corresponding to a histidine-to-arginine substitution in the catalytic loop of the protein. In addition, we show, by in vitro expression, that this mutation inhibits the autophosphorylation of the receptor. Thus, defective VEGFR3 signaling seems to be the cause of congenital hereditary lymphedema linked to 5q34-q35.

Journal ArticleDOI
TL;DR: This review focuses specifically on the current understanding of the Shh-Ptch-Gli pathway and its clinical significance in humans.
Abstract: Embryogenesis is regulated by a number of complex signaling cascades, which are critical for normal development. One such pathway begins with a secreted protein called “SONIC HEDGEHOG” (SHH [MIM 600725]), which sets off a chain of events in target cells, leading to the activation and repression of target genes by transcription factors in the Gli family. Dysregulation of the Sonic hedgehog–Patched–Gli (Shh-Ptch-Gli) pathway leads to several human diseases, including birth defects and cancers. Elements of the Shh-Ptch-Gli pathway are highly conserved, indicating its essential role in development. However, Shh signaling is also apparently susceptible to evolutionary pressures. Thus, Shh signaling has been adapted to serve tremendously diverse functions in a wide array of animal models, in both embryonic and adult life. Shh and the downstream molecules involved in signal transduction vary, to some extent, between animals, as well. Although a great deal can be learned from the study of animal models, it is essential to not assume that what is true in one model system is necessarily true in another. Thus, this review focuses specifically on our current understanding of the Shh-Ptch-Gli pathway and its clinical significance in humans.

Journal ArticleDOI
TL;DR: It is reported here that heterozygote mutations in LMNA, the gene for AD-EMD, may cause diverse phenotypes ranging from typical EMD to no phenotypic effect, and shows that LMNA mutations are also responsible for the recessive form of the disease.
Abstract: Emery-Dreifuss muscular dystrophy (EMD) is a condition characterized by the clinical triad of early-onset contractures, progressive weakness in humeroperoneal muscles, and cardiomyopathy with conduction block. The disease was described for the first time as an X-linked muscular dystrophy, but autosomal dominant and autosomal recessive forms were reported. The genes for X-linked EMD and autosomal dominant EMD (AD-EMD) were identified. We report here that heterozygote mutations in LMNA, the gene for AD-EMD, may cause diverse phenotypes ranging from typical EMD to no phenotypic effect. Our results show that LMNA mutations are also responsible for the recessive form of the disease. Our results give further support to the notion that different genetic forms of EMD have a common pathophysiological background. The distribution of the mutations in AD-EMD patients (in the tail and in the 2A rod domain) suggests that unique interactions between lamin A/C and other nuclear components exist that have an important role in cardiac and skeletal muscle function.

Journal ArticleDOI
TL;DR: Eight noncoding single-nucleotide substitutions, two of which are present at polymorphic frequency, and a previously unrecognized first intron of CACNB4 that interrupts exon 1 at codon 21 are described, which may be considered candidate disease mutations.
Abstract: Inactivation of the β 4 subunit of the calcium channel in the mouse neurological mutant lethargic results in a complex neurological disorder that includes absence epilepsy and ataxia. To determine the role of the calcium-channel β 4 -subunit gene CACNB4 on chromosome 2q22-23 in related human disorders, we screened for mutations in small pedigrees with familial epilepsy and ataxia. The premature-termination mutation R482X was identified in a patient with juvenile myoclonic epilepsy. The R482X protein lacks the 38 C-terminal amino acids containing part of an interaction domain for the α 1 subunit. The missense mutation C104F was identified both in a German family with generalized epilepsy and praxis-induced seizures and in a French Canadian family with episodic ataxia. These coding mutations were not detected in 255 unaffected control individuals (510 chromosomes), and they may be considered candidate disease mutations. The results of functional tests of the truncated protein R482X in Xenopus laevis oocytes demonstrated a small decrease in the fast time constant for inactivation of the cotransfected α 1 subunit. Further studies will be required to evaluate the in vivo consequences of these mutations. We also describe eight noncoding single-nucleotide substitutions, two of which are present at polymorphic frequency, and a previously unrecognized first intron of CACNB4 that interrupts exon 1 at codon 21.

Journal ArticleDOI
TL;DR: Substantial heterogeneity exists within all three classes of sequence haplotypes, and there are important interpopulation differences in the sequence variation underlying the protein isoforms that may be relevant to interpreting conflicting reports of phenotypic associations with variation in the commonprotein isoforms.
Abstract: Three common protein isoforms of apolipoprotein E (apoE), encoded by the η2, η3, and η4 alleles of the APOE gene, differ in their association with cardiovascular and Alzheimer's disease risk. To gain a better understanding of the genetic variation underlying this important polymorphism, we identified sequence haplotype variation in 5.5 kb of genomic DNA encompassing the whole of the APOE locus and adjoining flanking regions in 96 individuals from four populations: blacks from Jackson, MS ( n =48 chromosomes), Mayans from Campeche, Mexico ( n =48), Finns from North Karelia, Finland ( n =48), and non-Hispanic whites from Rochester, MN ( n =48). In the region sequenced, 23 sites varied (21 single nucleotide polymorphisms, or SNPs, 1 diallelic indel, and 1 multiallelic indel). The 22 diallelic sites defined 31 distinct haplotypes in the sample. The estimate of nucleotide diversity (site-specific heterozygosity) for the locus was 0.0005±0.0003. Sequence analysis of the chimpanzee APOE gene showed that it was most closely related to human η4-type haplotypes, differing from the human consensus sequence at 67 synonymous (54 substitutions and 13 indels) and 9 nonsynonymous fixed positions. The evolutionary history of allelic divergence within humans was inferred from the pattern of haplotype relationships. This analysis suggests that haplotypes defining the η3 and η2 alleles are derived from the ancestral η4s and that the η3 group of haplotypes have increased in frequency, relative to η4s, in the past 200,000 years. Substantial heterogeneity exists within all three classes of sequence haplotypes, and there are important interpopulation differences in the sequence variation underlying the protein isoforms that may be relevant to interpreting conflicting reports of phenotypic associations with variation in the common protein isoforms.

Journal ArticleDOI
TL;DR: It is suggested that there are multiple independently inherited dimensions of neural deficit in schizophrenia and a search for genes contributing to quantitative variation in discrete aspects of disease liability is encouraged.
Abstract: While genetic influences in schizophrenia are substantial, the disorder's molecular genetic basis remains elusive. Progress has been hindered by lack of means to detect nonpenetrant carriers of the predisposing genes and by uncertainties concerning the extent of locus heterogeneity. One approach to solving this complexity is to examine the inheritance of pathophysiological processes mediating between genotype and disease phenotype. Here we evaluate whether deficits in neurocognitive functioning covary with degree of genetic relationship with a proband in the unaffected MZ and DZ co-twins of patients with schizophrenia. Twin pairs discordant for schizophrenia were recruited from a total population cohort and were compared with a demographically balanced sample of control twin pairs, on a comprehensive neuropsychological test battery. The following four neuropsychological functions contributed uniquely to the discrimination of degree of genetic loading for schizophrenia and, when combined, were more highly correlated within MZ pairs than within DZ pairs, in both discordant and control twins: spatial working memory (i.e., remembering a sequence of spatial locations over a brief delay), divided attention (i.e., simultaneous performance of a counting and visual-search task), intrusions during recall of a word list (i.e., "remembering" nonlist items), and choice reaction time to visual targets. Together with evidence from human and animal studies of mediation of these functions by partially distinct brain systems, our findings suggest that there are multiple independently inherited dimensions of neural deficit in schizophrenia and encourage a search for genes contributing to quantitative variation in discrete aspects of disease liability. On tests of verbal and visual episodic memory, but not on the liability-related measures, patients were more impaired than their own MZ co-twins, suggesting a preferential impact of nongenetic influences on long-term memory systems.

Journal ArticleDOI
TL;DR: It is found that a high density of markers will be necessary in order to have a good chance of including SNPs with detectable levels of allelic association with the disease mutation, and statistical analysis based on haplotypes can provide additional information with respect to tests of significance and fine localization of complex disease genes.
Abstract: There has been great interest in the prospects of using single-nucleotide polymorphisms (SNPs) in the search for complex disease genes, and several initiatives devoted to the identification and mapping of SNPs throughout the human genome are currently underway. However, actual data investigating the use of SNPs for identification of complex disease genes are scarce. To begin to look at issues surrounding the use of SNPs in complex disease studies, we have initiated a collaborative SNP mapping study around APOE, the well-established susceptibility gene for late-onset Alzheimer disease (AD). Sixty SNPs in a 1.5-Mb region surrounding APOE were genotyped in samples of unrelated cases of AD, in controls, and in families with AD. Standard tests were conducted to look for association of SNP alleles with AD, in cases and controls. We also used family-based association analyses, including recently developed methods to look for haplotype association. Evidence of association ( P ≤.05) was identified for 7 of 13 SNPs, including the APOE-4 polymorphism, spanning 40 kb on either side of APOE. As expected, very strong evidence for association with AD was seen for the APOE-4 polymorphism, as well as for two other SNPs that lie APOE. Haplotype analysis using family data increased significance over that seen in single-locus tests for some of the markers, and, for these data, improved localization of the gene. Our results demonstrate that associations can be detected at SNPs near a complex disease gene. We found that a high density of markers will be necessary in order to have a good chance of including SNPs with detectable levels of allelic association with the disease mutation, and statistical analysis based on haplotypes can provide additional information with respect to tests of significance and fine localization of complex disease genes.

Journal ArticleDOI
TL;DR: It is concluded that MC1R is under strong functional constraint in Africa, where any diversion from eumelanin production (black pigmentation) appears to be evolutionarily deleterious.
Abstract: It is widely assumed that genes that influence variation in skin and hair pigmentation are under selection. To date, the melanocortin 1 receptor (MC1R) is the only gene identified that explains substantial phenotypic variance in human pigmentation. Here we investigate MC1R polymorphism in several populations, for evidence of selection. We conclude that MC1R is under strong functional constraint in Africa, where any diversion from eumelanin production (black pigmentation) appears to be evolutionarily deleterious. Although many of the MC1R amino acid variants observed in non-African populations do affect MC1R function and contribute to high levels of MC1R diversity in Europeans, we found no evidence, in either the magnitude or the patterns of diversity, for its enhancement by selection; rather, our analyses show that levels of MC1R polymorphism simply reflect neutral expectations under relaxation of strong functional constraint outside Africa.

Journal ArticleDOI
TL;DR: The proposed GC method is used, which has the robustness of family-based designs even though it uses population-based data, and is found that, economically, GC is at least comparable to and often less expensive than family- based methods.
Abstract: Although association analysis is a useful tool for uncovering the genetic underpinnings of complex traits, its utility is diminished by population substructure, which can produce spurious association between phenotype and genotype within population-based samples. Because family-based designs are robust against substructure, they have risen to the fore of association analysis. Yet, if population substructure could be ignored, this robustness can come at the price of power. Unfortunately it is rarely evident when population substructure can be ignored. Devlin and Roeder recently have proposed a method, termed "genomic control" (GC), which has the robustness of family-based designs even though it uses population-based data. GC uses the genome itself to determine appropriate corrections for population-based association tests. Using the GC method, we contrast the power of two study designs, family trios (i.e., father, mother, and affected progeny) versus case-control. For analysis of trios, we use the TDT test. When population substructure is absent, we find GC is always more powerful than TDT; furthermore, contrary to previous results, we show that as a disease becomes more prevalent the discrepancy in power becomes more extreme. When population substructure is present, however, the results are more complex: TDT is more powerful when population substructure is substantial, and GC is more powerful otherwise. We also explore general issues of power and implementation of GC within the case-control setting and find that, economically, GC is at least comparable to and often less expensive than family-based methods. Therefore, GC methods should prove a useful complement to family-based methods for the genetic analysis of complex traits.

Journal ArticleDOI
TL;DR: A genomewide screen for asthma- and atopy-susceptibility loci was conducted in 693 Hutterites who are members of a single 15-generation pedigree, nearly doubling the sample size from the authors' earlier studies, leading to the identification of 23 loci in 18 chromosomal regions showing evidence for linkage that is 10-fold more significant than the linkages reported previously in this population.
Abstract: A genomewide screen for asthma- and atopy-susceptibility loci was conducted, using 563 markers, in 693 Hutterites who are members of a single 15-generation pedigree, nearly doubling the sample size from the authors' earlier studies. The resulting increase in power led to the identification of 23 loci in 18 chromosomal regions showing evidence for linkage that is, in general, 10-fold more significant (P<.001 vs. P<.01) than the linkages reported previously in this population. Moreover, linkages to loci in 11 chromosomal regions were identified for the first time in the Hutterites in this report, including five regions (5p, 5q, 8p, 14q, and 16q) showing evidence both of linkage, by the likelihood ratio (LR) χ2, and of disequilibrium, by the transmission/disequilibrium test. A region on chromosome 19 continues to show evidence for linkage, by both tests, in this study. Studies of 17 candidate genes provide evidence for association with variation in the IL4RA gene (16p12), the HLA class II genes (6p21), and the interferon-α gene cluster (9p22), but the lack of evidence for linkage in these regions by the LR χ2 test suggests that these are minor susceptibility loci. A polymorphism in the CD14 gene is in linkage disequilibrium with an as yet unidentified susceptibility allele in the 5q cytokine cluster, a region showing evidence for linkage among the Hutterites. Finally, 10 of the regions showing evidence for linkage in the Hutterites have shown evidence of linkage to related phenotypes in other genome screens, suggesting that these regions may contain common alleles that have relatively large effects on asthma and atopy phenotypes in diverse populations.