scispace - formally typeset
Search or ask a question

Showing papers in "American Mineralogist in 2014"


Journal ArticleDOI
TL;DR: In this paper, the authors present a new formulation of the problem that avoids the assumption of linear elasticity theory and show that for soft inclusions such as quartz in relatively stiff host materials such as garnet, the previous analysis yields entrapment pressures in error by the order of 0.1 GPa.
Abstract: Minerals trapped as inclusions within other host minerals can develop residual stresses on exhumation as a result of the differences between the thermo-elastic properties of the host and inclusion phases. The determination of possible entrapment pressures and temperatures from this residual stress requires the mutual elastic relaxation of the host and inclusion to be determined. Previous estimates of this relaxation have relied on the assumption of linear elasticity theory. We present a new formulation of the problem that avoids this assumption. We show that for soft inclusions such as quartz in relatively stiff host materials such as garnet, the previous analysis yields entrapment pressures in error by the order of 0.1 GPa. The error is larger for hosts that have smaller shear moduli than garnet.

117 citations


Journal ArticleDOI
TL;DR: In this article, the spectral properties of Ca-sulfates were studied for remote detection of these minerals on Mars using Raman and reflectance spectra for various sample forms, including gypsum, bassanite, and anhydrite.
Abstract: This study of the spectral properties of Ca-sulfates was initiated to support remote detection of these minerals on Mars. Gypsum, bassanite, and anhydrite are the currently known forms of Ca-sulfates. They are typically found in sedimentary evaporites on Earth, but can also form via reaction of acidic fluids associated with volcanic activity. Reflectance, emission, transmittance, and Raman spectra are discussed here for various sample forms. Gypsum and bassanite spectra exhibit characteristic and distinct triplet bands near 1.4–1.5 μm, a strong band near 1.93–1.94 μm, and multiple features near 2.1–2.3 μm attributed to H2O. Anhydrite, bassanite, and gypsum all have SO4 combination and overtone features from 4.2–5 μm that are present in reflectance spectra. The mid-IR region spectra exhibit strong SO4 ν3 and ν4 vibrational bands near 1150–1200 and 600–680 cm−1 (~8.5 and 16 μm), respectively. Additional weaker features are observed near 1005–1015 cm−1 (~10 μm) for ν1 and near 470–510 cm−1 (~20 μm) for ν2. The mid-IR H2O bending vibration occurs near 1623–1630 cm−1 (~6.2 μm). The visible/near-infrared region spectra are brighter for the finer-grained samples. In reflectance and emission spectra of the mid-IR region the ν4 bands begin to invert for the finer-grained samples, and the ν1 vibration occurs as a band instead of a peak and has the strongest intensity for the finer-grained samples. The ν2 vibration is a sharp band for anhydrite and a broad peak for gypsum. The band center of the ν1 vibration follows a trend of decreasing frequency (increasing wavelength) with increasing hydration of the sample in the transmittance, Raman, and reflectance spectra. Anhydrite forms at elevated temperatures compared to gypsum, and at lower temperature, salt concentration, and pH than bassanite. The relative humidity controls whether bassanite or gypsum is stable. Thus, distinguishing among gypsum, bassanite, and anhydrite via remote sensing can provide constraints on the geochemical environment.

117 citations


Journal ArticleDOI
TL;DR: In this paper, Zhao et al. analyzed scheelite in skarn-type W-Mo mines and revealed two unique geochemical characteristics: higher Mo content with a negative correlation between MoO 3 and WO 3, and a strong HREE depletion.
Abstract: Scheelite is well developed in hydrothermal deposits, providing a window into genetic processes and facilitating comparative studies, however, few studies have focused on characterizing scheelite in skarn-type W-Mo deposits. The primary ore mineral in the Jitoushan and Baizhangyan skarn-type W-Mo deposits (Anhui Province, Eastern China), scheelite was analyzed for major, trace, and rare earth element (REE) abundance and for Sr-Nd isotopes. The analysis revealed two unique geochemical characteristics that distinguish the scheelite from skarn-type W-Mo deposits to that from vein-type Au-W and porphyry-type W-Mo deposits: higher Mo content with a negative correlation between MoO 3 and WO 3 and a strong HREE depletion. Skarn-type scheelite mainly inherited REE signatures from ore-forming fluids, and the early precipitation of skarn minerals (e.g., garnet, diopside, and amphibole) has most likely resulted in the observed strong HREE depletion in scheelite and the decoupling of LREEs and HREEs. Of the numerous substitution mechanisms suggested by previous workers, 3Ca 2+ = 2REE 3+ + □Ca (where □Ca is a Ca-site vacancy) is preferred for the substitution of REE 3+ for Ca 2+ and in this study, particularly given the low salinity of ore fluids. As the scheelite Eu anomalies were inherited from ore-forming fluids with variable redox conditions and pH, the complex dEu/Mo correlation indicates that Mo increasingly entered the scheelite under oxidizing conditions and reached a maxim at dEu values of 0.8 to 1. In contrast, under reducing conditions, Mo contents in scheelite decrease gradually and Mo is precipitated as molybdenite as a result of the change in dominant valence state. Unlike the Sr-Nd isotope compositions of scheelite from vein-type Au-(W) and W-(Sb-Au) deposits, the scheelite from skarn-type W-Mo deposits has low ( 143 Nd/ 144 Nd)(t) (most 87 Sr/ 86 Sr)(t) values (most between 0.708 and 0.715). The eNd(t) values of the scheelite varied from −16 to −12.3 in the Baizhangyan deposit and from −9.5 to −9.1 in the Jitoushan deposit, indicating that the ore-forming materials in the two W-Mo deposits were mainly derived from crustal sources.

105 citations


Journal ArticleDOI
TL;DR: In this article, the first in-depth X-ray microstructural and microspectroscopic investigation of a mixed hydrogenetic-diagenetic nodule, which is representative of ferromanganese deposits on abyssal plains, is presented.
Abstract: Minor-element concentrations in marine ferromanganese nodules are primarily controlled by the mineralogy, which itself depends on redox conditions at the sediment-water interface. Results are presented for the first in-depth X-ray microstructural and microspectroscopic investigation of a mixed hydrogenetic-diagenetic nodule, which is representative of ferromanganese deposits on abyssal plains. The measurements were conducted by micro-X-ray diffraction and X-ray absorption spectroscopy (both XANES and EXAFS) on hydrogeneous and diagenetic regions of the nodule. The hydrogenetic-diagenetic interface was imaged by X-ray microfluorescence, after which regions of interest were chosen to represent mineralogical and chemical transformations that occurred at the early stage of suboxic diagenesis. In the hydrogenetic nodule (oxic environment), Mn is speciated as Fe-vernadite, a nanocomposite material composed of intergrown feroxyhite (δ-FeOOH) and monodispersed phyllomanganate layers having no interlayer Mn (vernadite). In the diagenetic nodule (suboxic environment), Mn is speciated dominantly as Mg-rich 10 A vernadite, which consists of a random intergrowth of vernadite and its transformation product todorokite. The authigenic 10 A vernadite precipitated from the components of vernadite in Fe-vernadite that were dissolved in suboxic microenvironments of the sediment. Direct evidence supporting a redox-driven dissolution reaction is provided by the valence composition of Mn, as measured by micro-XANES, which is 0.69Mn4+ + 0.24Mn3+ + 0.07Mn2+ (average = 3.62 ± 0.04 v.u.) for Fe-vernadite and 0.61Mn4+ + 0.23Mn3+ + 0.16Mn2+ (average 3.28 ± 0.04 v.u.) for 10 A vernadite. Ni and Cu, derived mainly from dissolved vernadite and oxidized organic matter, replace structural Mn3+/4+ in both the MnO2 layer and todorokite domains of 10 A vernadite. Pure todorokite in highly diagenetic regions of the nodule has an average formula of Mg2+0.167(Mn4+0.783 Mn3+0.099Co3+0.002Ni2+0.076Cu2+0.040)O2· n H2O, with an atomic ratio of (Cu+Ni+Co)/Mn = 0.13, which is slightly lower than 0.167 (1/6), the maximum metal uptake capacity reported for marine nodules. By analogy with synthetic todorokites we infer that Mg2+, which has a hydrated diameter close to that of the [3 × 3] tunnel size of todorokite, and Mn3+ and Cu2+, which prefer Jahn-Teller distorted octahedra, play a crucial role in templating the topotactic transformation of 10 A vernadite to todorokite and stabilizing todorokite in suboxic marine sediments.

99 citations


Journal ArticleDOI
TL;DR: In this article, a series of drained triaxial compression tests were conducted on synthetic carbon dioxide hydrate-bearing sediments under various conditions and a comparative analysis was also made between carbon dioxide and methane hydrate bearing sediments.
Abstract: Understanding the mechanical behaviors of carbon dioxide/methane hydrate-bearing sediments is essential for assessing the feasibility of CO2 displacement recovery methods to produce methane from hydrate reservoirs. In this study, a series of drained triaxial compression tests were conducted on synthetic carbon dioxide hydrate-bearing sediments under various conditions. A comparative analysis was also made between carbon dioxide and methane hydrate-bearing sediments. The stress-strain curves, shear strength, and the effects of hydrate saturation, effective confining stress, and temperature on the mechanical behaviors were investigated. Our experimental results indicate that the newly formed carbon dioxide hydrate would keep the reservoir mechanically stable when CH4-CO2 gas exchange took place in a relatively short period of time and spatially well distributed in the pore space. Experiments of CO2 injection in methane hydrate-bearing sediments are necessary to confirm this hypothesis.

86 citations


Journal ArticleDOI
TL;DR: In this paper, the spectral effects of varying mafic and oxide composition and abundance in mixtures with a common plagioclase end-member are investigated. But the authors focus on the spectral properties of the mixtures.
Abstract: Anorthositic rocks dominate the Moon’s upper crust. As remnants of the lunar magma ocean (LMO), small variations in the mineralogy of these rocks may hold key information about the homogeneity of LMO composition and solidification processes. Orbital near-infrared (NIR) sensors are sensitive to mineralogy, but technologic advances have only recently enabled detection of the plagioclase component in crustal rocks based on an absorption band centered near 1250 nm. Anorthosites occupy a unique mineralogic range that is well suited for NIR studies: the highly transparent component, plagioclase, is present in high abundances while the spectrally dominant mafic or oxide minerals are present in only minor abundance. As a result, spectra of anorthosites are more likely than many other rock types to contain visually discernable signatures from more than one mineral component, facilitating their identification and characterization in NIR data. In support of new NIR measurements for the Moon, we present laboratory spectral analyses of well-controlled plagioclase-dominated mineral mixtures. We focus on the spectral effects of varying mafic and oxide composition and abundance in mixtures with a common plagioclase end-member. The results demonstrate that plagioclase can be a significant contributor to reflectance spectra when strongly absorbing minerals are present in low abundance. We show that the contribution of plagioclase is more pronounced in mixtures with pyroxenes and certain spinels, but more easily masked in mixtures containing small amounts of olivine. Differences in minor mineral composition are clearly expressed in bulk spectra. Modeling of mixtures using a Hapke nonlinear approach accurately estimates mineral abundances in laboratory spectra to within 5 vol% for mixtures with ≥90 vol% plagioclase. Together, these results imply that not only should orbital NIR data sets be able to discern the presence of plagioclase in anorthositic crustal exposures, but also that detailed information about anorthosite mineral assemblages can be reliably accessed in reflectance spectra.

85 citations


Journal ArticleDOI
TL;DR: In this article, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) was used to analyze pyrite framboids from both the contaminated Derwent Estuary and the uncontaminated Huon Estuary in Tasmania, Australia.
Abstract: The accumulation of metals and metalloids in diagenetic pyrite framboids is of interest because framboids can be a sink for heavy metal contaminants, a source of metals in ore deposits, and a tool to interpret paleo-ocean chemistry. In this study, we have used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to analyze pyrite framboids from both the contaminated Derwent Estuary and the uncontaminated Huon Estuary in Tasmania, Australia. While the enrichment of many trace metals in the Huon Estuary followed expected trends, the trends in the Derwent were quite different. In addition to the expected high contents of Pb, Zn, and Cu in the contaminated interval it was found that several elements are not as strongly incorporated into pyrite within the contaminated zone. It is suggested that this is due to over-competition for adsorption sites on the growing iron sulfides in the contaminated zone resulting in diffusion of several elements to deeper levels in the sediments. This results in an increase of these elements in pyrite below the zone of major contamination. The LA-ICPMS technique also provided the opportunity to obtain accurate data on gold, silver, and tellurium in pyrite, something rarely achieved in sequential leach extractions due to the low concentrations of these metals observed in nature.

82 citations


Journal ArticleDOI
TL;DR: Ferrian saponite from the eastern Santa Monica mountain, near Griffith Park (Los Angeles, California), was investigated as a mineralogical analog to smectites discovered on Mars by the CheMin X-ray diffraction instrument onboard the Mars Science Laboratory (MSL) rover.
Abstract: Ferrian saponite from the eastern Santa Monica Mountain, near Griffith Park (Los Angeles, California), was investigated as a mineralogical analog to smectites discovered on Mars by the CheMin X-ray diffraction instrument onboard the Mars Science Laboratory (MSL) rover. The martian clay minerals occur in sediment of basaltic composition and have 02 l diffraction bands peaking at 4.59 A, consistent with tri-octahedral smectites. The Griffith saponite occurs in basalts as pseudomorphs after olivine and mesostasis glass and as fillings of vesicles and cracks and has 02 l diffraction bands at that same position. We obtained chemical compositions (by electron microprobe), X-ray diffraction patterns with a lab version of the CheMin instrument, Mossbauer spectra, and visible and near-IR reflectance (VNIR) spectra on several samples from that locality. The Griffith saponite is magnesian, Mg/(Mg+∑Fe) = 65–70%, lacks tetrahedral Fe 3+ and octahedral Al 3+ , and has Fe 3+ /∑Fe from 64 to 93%. Its chemical composition is consistent with a fully tri-octahedral smectite, but the abundance of Fe 3+ gives a nominal excess charge of +1 to +2 per formula unit. The excess charge is likely compensated by substitution of O 2− for OH − , causing distortion of octahedral sites as inferred from Mossbauer spectra. We hypothesize that the Griffith saponite was initially deposited with all its iron as Fe 2+ and was oxidized later. X-ray diffraction shows a sharp 001 peak at 15 A, 00 l peaks, and a 02 l diffraction band at the same position (4.59 A) and shape as those of the martian samples, indicating that the martian saponite is not fully oxidized. VNIR spectra of the Griffith saponite show distinct absorptions at 1.40, 1.90, 2.30–2.32, and 2.40 μm, arising from H 2 O and hydroxyl groups in various settings. The position of the ~2.31 μm spectral feature varies systematically with the redox state of the octahedrally coordinated Fe. This correlation may permit surface oxidation state to be inferred (in some cases) from VNIR spectra of Mars obtained from orbit, and, in any case, ferrian saponite is a viable assignment for spectral detections in the range 2.30–2.32 μm.

78 citations


Journal ArticleDOI
TL;DR: In this paper, a review of spinel-type structures with the general formula AB 2ϕ4 is presented, where ϕ can be O2−, S2− or Se2−.
Abstract: Compounds with a spinel-type structure include mineral species with the general formula AB 2ϕ4, where ϕ can be O2−, S2−, or Se2−. Space group symmetry is Fd 3 m , even if lower symmetries are reported owing to the off-center displacement of metal ions. In oxide spinels (ϕ = O2−), A and B cations can be divalent and trivalent (“2–3 spinels”) or, more rarely, tetravalent and divalent (“4-2 spinels”). From a chemical point of view, oxide spinels belong to the chemical classes of oxides, germanates, and silicates. Up to now, 24 mineral species have been approved: ahrensite, brunogeierite, chromite, cochromite, coulsonite, cuprospinel, filipstadite, franklinite, gahnite, galaxite, hercynite, jacobsite, magnesiochromite, magnesiocoulsonite, magnesioferrite, magnetite, manganochromite, qandilite, ringwoodite, spinel, trevorite, ulvospinel, vuorelainenite, and zincochromite. Sulfospinels (ϕ = S2−) and selenospinels (ϕ = Se2−) are isostructural with oxide spinels. Twenty-one different mineral species have been approved so far; of them, three are selenospinels (bornhardtite, trustedtite, and tyrrellite), whereas 18 are sulfospinels: cadmoindite, carrollite, cuproiridsite, cuprokalininite, cuprorhodsite, daubreelite, ferrorhodsite, fletcherite, florensovite, greigite, indite, kalininite, linnaeite, malanite, polydymite, siegenite, violarite, and xingzhongite. The known mineral species with spinel-type structure are briefly reviewed, indicating for each of them the type locality, the origin of the name, and a few more miscellaneous data. This review aims at giving the state-of-the-art about the currently valid mineral species, considering the outstanding importance that these compounds cover in a wide range of scientific disciplines.

78 citations


Journal ArticleDOI
TL;DR: In this paper, the hydration state of bone mineral through Raman spectroscopic and thermogravimetric analysis of 56 samples of carbonated apatite containing from 1 to 17 wt% CO 3, synthesized in H 2 O or D 2 O.
Abstract: Despite numerous analytical studies, the exact nature of the mineral component of bone is not yet totally defined, even though it is recognized as a type of carbonated hydroxylapatite. The present study addresses the hydration state of bone mineral through Raman spectroscopic and thermogravimetric analysis of 56 samples of carbonated apatite containing from 1 to 17 wt% CO 3 , synthesized in H 2 O or D 2 O. Focus is on the relation between the concentration of molecular water (as distinguished from hydroxyl ions) and the concentration of carbonate in the apatite. Raman spectra confirm the presence of molecular water as part of the crystalline structure in all the aqueously precipitated carbonated apatites. TGA results quantitatively document that, regardless of the concentration of carbonate in the structure, all hydroxylapatites contain ~3 wt% of structurally incorporated water in addition to multiple wt% adsorbed water. We spectroscopically confirmed that natural bone mineral also contains structurally incorporated molecular H 2 O based on independent analyses of bone by means of spectral stripping (subtracting the spectrum of collagen from that of bone) and chemical stripping (chemically removing the collagen content of bone prior to analysis). Taken together, the above data support a model in which water molecules densely populate the apatite channels regardless of the abundance of hydroxyl vacancies. We hypothesize that water molecules keep the apatite channels stable even when 80% of the hydroxyl sites are vacant (typical in bone), hinder carbonate ions from substituting for hydroxyl ions in the channels, and help regulate chemical access to the channels (e.g., ion exchange, entry of small molecules). Our results show that bone apatite is not a “flawed hydroxylapatite,” but instead a definable mineralogical entity, a combined hydrated-hydroxylated calcium phosphate phase of the form Ca 10−x [(PO 4 ) 6−x (CO 3 ) x ](OH) 2−x ·nH 2 O, where n ~ 1.5. Water is therefore not an accidental, but rather an essential, component of bone mineral and other natural and synthetic low-temperature carbonated apatite phases.

70 citations


Journal ArticleDOI
TL;DR: In this paper, the authors found minute euhedal chromite grains enclosed by uvarovite (Ca-Cr garnet) in a diopsidite, metasomatically replacing the layered gabbro of the Oman ophiolite.
Abstract: Chromite is a typical refractory igneous mineral, precipitated from mafic magmas at relatively high temperatures. Chromites commonly occur in sedimentary, metamorphic, and metasomatic rocks, where they are interpreted as relics of an igneous phase and serve as the source of Cr for low-temperature Cr-bearing minerals. We present evidence for the nucleation of chromite within hydrothermal solutions. We have found minute euhedal chromite grains enclosed by uvarovite (Ca-Cr garnet) in a diopsidite, metasomatically replacing the layered gabbro of the Oman ophiolite. The uvarovite shows oscillatory concentric zoning in terms of Cr no. [Cr/(Cr+Al)], and the chromite is embedded only in the high-Cr-no. zones of the uvarovite. Another diopsidite, replacing peridotite in the underlying upper mantle section, contains xenocrystic chromite, which is partly dissolved. This suggests that a hydrothermal solution collected Cr by partial to total dissolution of chromite within the upper mantle and precipitated chromite, along with high-Cr-no. uvarovite, within the lower crust upsection. The metasomatic agent involved was a CO2-, SO2-, and Cl-bearing hydrothermal solution containing appreciable silicate components that could carry Cr, possibly as a complex. The hydrothermal chromite is similar in chemistry to that commonly found in igneous rocks [e.g., Cr no. = 0.8, Mg/(Mg+Fe2+) = 0.1–0.2, TiO2 < 0.3 wt% and Fe3+/(Cr+Al+Fe3+), up to 0.3], but its Cr no. is clearly different from that of mantle chromite (0.6–0.7) in peridotites and chromitites from the Oman ophiolite. The results from this study suggest that a hydrothermal origin is possible for chromites in ultramafic rocks that have experienced fluid activity assuming that there is sufficient chromite at the fluid source.

Journal ArticleDOI
TL;DR: In this paper, a robust assessment is made of the distribution and geologic context for the newly identified rock type on the Moon, a Mg-spinel-bearing anorthosite (pink-sinel-anorthosite, PSA).
Abstract: A robust assessment is made of the distribution and (spatially resolved) geologic context for the newly identified rock type on the Moon, a Mg-spinel-bearing anorthosite (pink-spinel anorthosite, PSA). Essential criteria for confirmed detection of Mg-spinel using spectroscopic techniques are presented and these criteria are applied to recent data from the Moon Mineralogy Mapper. Altogether, 23 regions containing confirmed exposures of the new Mg-spinel rock type are identified. All exposures are in highly feldspathic terrain and are small—a few hundred meters—but distinct and verifiable, most resulting from multiple measurements. Each confirmed detection is classified according to geologic context along with other lithologies identified in the same locale. Confirmed locations include areas along the inner rings of four mascon basins, knobs within central peaks of a few craters, and dispersed exposures within the terraced walls of several large craters. Unexpected detections of Mg-spinel are also found at a few areas of hypothesized non-mare volcanism. The small Mg-spinel exposures are shown to be global in distribution, but generally associated with areas of thin crust. Confirmation of Mg-spinel exposures as part of the inner ring of four mascon basins indicates this PSA rock type is principally of lower crust origin and predates the basin-forming era.

Journal ArticleDOI
TL;DR: In this article, the authors used fast Fourier transforms to obtain cubic symmetry of qingsongite, a = 3.61 ± 0.045 A. The density calculated for the mean composition B 1 1.100 N 0.887 and B 1.087 N 0.913, respectively, for maximum and minimum B contents, respectively (based on 2 atoms per formula unit); no other elements that could substitute for B or N were detected.
Abstract: Qingsongite (IMA 2013-30) is the natural analog of cubic boron nitride (c-BN), which is widely used as an abrasive under the name “Borazon.” The mineral is named for Qingsong Fang (1939–2010), who found the first diamond in the Luobusa chromitite. Qingsongite occurs in a rock fragment less than 1 mm across extracted from chromitite in deposit 31, Luobusa ophiolite, Yarlung Zangbu suture, southern Tibet at 29°13.86N and 92°11.41E. Five electron microprobe analyses gave B 48.54 ± 0.65 wt% (range 47.90–49.2 wt%); N 51.46 ± 0.65 wt% (range 52.10–50.8 wt%), corresponding to B 1.113 N 0.887 and B 1.087 N 0.913 , for maximum and minimum B contents, respectively (based on 2 atoms per formula unit); no other elements that could substitute for B or N were detected. Crystallographic data on qingsongite obtained using fast Fourier transforms gave cubic symmetry, a = 3.61 ± 0.045 A. The density calculated for the mean composition B 1.100 N 0.900 is 3.46 g/cm 3 , i.e., qingsongite is nearly identical to synthetic c-BN. The synthetic analog has the sphalerite structure, space group F 43 m. Mohs hardness of the synthetic analog is between 9 and 10; its cleavage is {011}. Qingsongite forms isolated anhedral single crystals up to 1 μm in size in the marginal zone of the fragment; this zone consists of ~45 modal% coesite, ~15% kyanite, and ~40% amorphous material. Qingsongite is enclosed in kyanite, coesite, or in osbornite; other associated phases include native Fe; TiO 2 II, a high-pressure polymorph of rutile with the αPbO 2 structure; boron carbide of unknown stoichiometry; and amorphous carbon. Coesite forms prisms several tens of micrometers long, but is polycrystalline, and thus interpreted to be pseudomorphic after stishovite. Associated minerals constrain the estimated pressure to 10–15 GPa assuming temperature was about 1300 °C. Our proposed scenario for formation of qingsongite begins with a pelitic rock fragment that was subducted to mid-mantle depths where crustal B originally present in mica or clay combined with mantle N (δ 15 N = −10.4 ± 3‰ in osbornite) and subsequently exhumed by entrainment in chromitite. The presence of qingsongite has implications for understanding the recycling of crustal material back to the Earth’s mantle since boron, an essential constituent of qingsongite, is potentially an ideal tracer of material from Earth’s surface.

Journal ArticleDOI
TL;DR: Harmunite, a naturally occurring calcium ferrite CaFe2O4, was discovered in the Hatrurim Complex of pyrometamorphic larnite rocks close to the Jabel Harmun, the Judean Desert, West Bank, Palestinian Autonomy, Israel as discussed by the authors.
Abstract: Harmunite, naturally occurring calcium ferrite CaFe2O4, was discovered in the Hatrurim Complex of pyrometamorphic larnite rocks close to the Jabel Harmun, the Judean Desert, West Bank, Palestinian Autonomy, Israel. The new mineral occurs in larnite pebbles of the pseudo-conglomerate, the cement of which consists of intensely altered larnite-bearing rocks. Srebrodolskite, magnesioferrite, and harmunite are intergrown forming black porous aggregates to the central part of the pebbles. Larnite, fluorellestadite, ye’elimite, fluormayenite, gehlenite, ternesite, and calciolangbeinite are the main associated minerals. Empirical crystal chemical formula of harmunite from type specimen is as follows Ca1.013(Fe3+1.957Al0.015Cr3+0.011Ti4+0.004 Mg0.003)∑1.993O4. Calculated density is 4.404 g/cm3, microhardness VHN50 is 655 kg/mm2. The Raman spectrum of harmunite is similar to that of the synthetic analog. Harmunite in hand specimen is black and under reflected plane-polarized light is light gray with red internal reflections. Reflectance data for the COM wavelengths vary from ~22% (400 nm) to ~18% (700 nm). The crystal structure of harmunite [ Pnma; a = 9.2183(3), b = 3.0175(1), c = 10.6934(4) A; Z = 4, V = 297.45(2) A3], analogous to the synthetic counterpart, was refined from X-ray single-crystal data to R 1 = 0.0262. The structure of CaFe2O4 consist of two symmetrically independent FeO6 octahedra connected over common edges, forming double rutile-type ∞1[Fe2O6] chains. Four such double chains are further linked by common oxygen corners creating a tunnel-structure with large trigonal prismatic cavities occupied by Ca along [001]. The strongest diffraction lines are as follows [ d hkl , ( I )]: 2.6632 (100), 2.5244 (60), 2.6697 (52), 1.8335 (40), 2.5225 (35), 2.2318 (34), 1.8307 (27), 1.5098 (19). Crystallization of harmunite takes place in the presence of sulfate melt.

Journal ArticleDOI
TL;DR: Forsterite, Mg2SiO4, the magnesian end-member of the olivine system, is the archetypal example of an orthosilicate structure.
Abstract: Forsterite, Mg2SiO4, the magnesian end-member of the olivine system, is the archetypal example of an orthosilicate structure. We have conducted synchrotron-based single-crystal X-ray diffraction experiments to 90 GPa on synthetic end-member forsterite to study its equation of state and phase transitions. Upon room-temperature compression, the forsterite structure is observed to 48 GPa. By fitting a third-order Birch-Murnaghan equation of state to our compression data, we obtain the zero-pressure isothermal bulk modulus, K 0T = 130.0(9) GPa and its pressure derivative, K ′0T = 4.12(7) for a fixed room-pressure volume, V = 290.1(1) A3, in good agreement with earlier work. At 50 GPa, a phase transition to a new structure (forsterite II) occurs, followed by a second transition to forsterite III at 58 GPa. Forsterite III undergoes no additional phase transitions until at least 90 GPa. There is an ~4.8% volume reduction between forsterite and forsterite II, and a further ~4.2% volume reduction between forsterite II and III. On decompression forsterite III remains until as low as 12 GPa, but becomes amorphous at ambient conditions. Using our X-ray diffraction data together with an evolutionary crystal structure prediction algorithm and metadynamics simulations, we find that forsterite II has triclinic space group P 1 and forsterite III has orthorhombic space group Cmc 21. Both high-pressure phases are metastable. Metadynamics simulations show a stepwise phase transition sequence from 4-coordinated Si in forsterite to mixed tetrahedral and octahedral Si (as in forsterite II), and then fully sixfold-coordinated Si (as in forsterite III), occurring by displacement in \[001\](100). The forsterite III structure is a member of the family of post-spinel structures adopted by compositions such as CaFe2O4 and CaTi2O4.

Journal ArticleDOI
TL;DR: In this article, the impact-induced remobilization of volatiles, and vapor-phase transport with extreme elemental fractionation of the Moon's granulite breccia 79215 has been studied.
Abstract: In the last decade, it has been recognized that the Moon contains significant proportions of volatile elements (H, F, Cl), and that they are transported through the lunar crust and across its surface. Here, we document a significant segment of that volatile cycle in lunar granulite breccia 79215: impact-induced remobilization of volatiles, and vapor-phase transport with extreme elemental fractionation. 79215 contains ~1% volume of fluorapatite, Ca_5(PO_4)_3(F,Cl,OH), in crystals to 1 mm long, which is reflected in its analyzed abundances of F, Cl, and P. The apatite has a molar F/Cl ratio of ~10, and contains only 25 ppm OH and low abundances of the rare earth elements (REE). The chlorine in the apatite is isotopically heavy, at δ^(37)Cl = +32.7 ± 1.6‰. Hydrogen in the apatite is heavy at δD = +1060 ± 180‰; much of that D came from spallogenic nuclear reactions, and the original δD was lower, between +350‰ and +700‰. Unlike other P-rich lunar rocks (e.g., 65015), 79215 lacks abundant K and REE, and other igneous incompatible elements characteristic of the lunar KREEP component. Here, we show that the P and halogens in 79215 were added to an otherwise “normal” granulite by vapor-phase metasomatism, similar to rock alteration by fumarolic exhalations as observed on Earth. The ultimate source of the P and halogens was most likely KREEP, it being the richest reservoir of P on the Moon, and 79215 having H and Cl isotopic compositions consistent with KREEP. A KREEP-rich rock was heated and devolatilized by an impact event. This vapor was fractionated by interaction with solid phases, including merrillite (a volatile-free phosphate mineral), a Fe-Ti oxide, and a Zr-bearing phase. These solids removed REE, Th, Zr, Hf, etc., from the vapor, and allowed the vapor to transport primarily P, F, and Cl, with lesser proportions of Ba and U into 79215. Vapor-deposited crystals of apatite (to 30 μm) are known in some lunar regolith samples, but lunar vapor has not (before this) been implicated in significant mass transfer. It seems unlikely, however, that phosphate-halogen metasomatism is related to the high-Th/Sm abundance ratios of this and other lunar magnesian granulites. The metasomatism of 79215 emphasizes the importance of impact heating in the lunar volatile cycle, both in mobilizing volatile components into vapor and in generating strong elemental fractionations.

Journal ArticleDOI
TL;DR: In this article, the abundances of F, Cl, H2O, and S in merrillite from Shergotty using secondary ion mass spectrometry (SIMS) were determined.
Abstract: Whitlockite and merrillite are two Ca-phosphate minerals found in terrestrial and planetary igneous rocks, sometimes coexisting with apatite. Whitlockite has essential structural hydrogen, and merrillite is devoid of hydrogen. Whitlockite components have yet to be discovered in samples of extraterrestrial merrillite, despite evidence for whitlockite-merrillite solid solution in terrestrial systems. The observation of merrillite in meteoritic and lunar samples has led many to conclude that the magmas from which the merrillite formed were “very dry.” However, the Shergotty martian meteorite has been reported to contain both apatite and merrillite, and recently the apatite has been shown to contain substantial OH abundances, up to the equivalent of 8600 ppm H2O. In the present study, we determined the abundances of F, Cl, H2O, and S in merrillite from Shergotty using secondary ion mass spectrometry (SIMS). We determined that the merrillite in Shergotty was properly identified (i.e., no discernible whitlockite component), and it coexists with OH-rich apatite. The absence of a whitlockite component in Shergotty merrillite and other planetary merrillites may be a consequence of the limited thermal stability of H in whitlockite (stable only at T <1050 °C), which would prohibit merrillite-whitlockite solid-solution at high temperatures. Consequently, the presence of merrillite should not be used as evidence of dry magmatism without a corresponding estimate of the T of crystallization. In fact, if a whitlockite component in extraterrestrial merrillite is discovered, it may indicate formation by or equilibration with hydrothermal or aqueous fluids.

Journal ArticleDOI
TL;DR: In this article, the authors examined the evolution of beryllium mineral diversity in the upper crust of the Earth and found that the diversity increases with the passage of geologic time, and that the increase is episodic; steep increases at specific times are separated by longer time intervals with little or no increase in diversity.
Abstract: Beryllium is a quintessential upper crustal element, being enriched in the upper crust by a factor of 30 relative to primitive mantle, 2.1 vs. 0.07 ppm. Most of the 112 minerals with Be as an essential element are found in granitic pegmatites and alkalic rocks or in hydrothermal deposits associated with volcanic and shallow-level plutonic rocks and skarns. Because of the extensive differentiation needed to enrich rocks sufficiently in beryllium for beryllium minerals to form, these minerals are relative latecomers in the geologic record: the oldest known is beryl in pegmatites associated with the Sinceni pluton, Swaziland (3000 Ma). In general, beryllium mineral diversity reflects the diversity in the chemical elements available for incorporation in the minerals and increases with the passage of geologic time. Furthermore, the increase is episodic; that is, steep increases at specific times are separated by longer time intervals with little or no increase in diversity. Nonetheless, a closer examination of the record suggests that at about 1700 Ma, the rate of increase in diversity decreases and eventually levels off at ~35 species formed in a given 50 Ma time interval between 1125 and 475 Ma, then increases to 39 species at 125 Ma (except for four spikes), before dropping off to ~30 species for the last 100 Ma. These features appear to reflect several trends at work: (1) diversifications at 2475, 1775, and 525 Ma, which are associated with highly fractionated rare-element granitic pegmatites and with skarns at Langban and similar deposits in the Bergslagen ore region of central Sweden, and which are inferred to correspond to the collisional phases of the supercontinents Kenorland, Nuna, and Gondwana, respectively; (2) diversification at 1175 Ma due to the rich assemblage of beryllium minerals in the Ilimaussaq peralkaline complex, Gardar Province, West Greenland, in an extensional environment; (3) diversification at 275 Ma, which is largely attributable to granitic pegmatites (Appalachian Mountains, U.S.A., and Urals, Russia) and the Larvik alkalic complex, Norway, but nonetheless related to continental collision; and (4) limited exhumation of environments where beryllium minerals could have formed in the last 100 Ma. That the maximum diversity of Be minerals in any one geologic environment could be finite is suggested by the marked slowing of the increase in the number of species formed in a given 50 Ma time interval, whereas the drop off at 100 Ma could be due to 100 Myr being too short a time interval to exhume the deep-seated occurrences where many Be minerals had formed. The relative roles of chance vs. necessity in complex evolving systems has been a matter of considerable debate, one equally applicable to what extent the temporal distribution of beryllium minerals is a matter of contingency. On the one hand, the appearance of the most abundant Be minerals, such as beryl and phenakite, early in the history of Be mineralization appears to be a deterministic aspect since these minerals only require the abundant cations Al and Si and crystallize at relatively low concentrations of Be in aqueous solution or granitic magmas. On the other hand, it could be argued that the very existence of most other Be minerals, as well as the temporal sequence of their appearance, is a matter of chance since 55 of the 112 approved Be minerals are known from a single locality and many of these phases require an unusual combination of relatively rare elements. Consequently, we cannot exclude the possibility that other equally rare and thus contingent potential Be minerals await discovery in as yet unexposed subsurface deposits on Earth, and we suggest that details of Be mineral evolution on other Earth-like planets could differ significantly from those on Earth.

Journal ArticleDOI
TL;DR: In this paper, a first-principles molecular dynamics study of the equation of state, structural, and elastic properties of MgSiO3 glass at 300 K as a function of pressure up to 170 GPa was performed.
Abstract: We report a first-principles molecular dynamics study of the equation of state, structural, and elastic properties of MgSiO3 glass at 300 K as a function of pressure up to 170 GPa. We explore two different compression paths: cold compression, in which the zero pressure quenched glass is compressed at 300 K, and hot compression, in which the liquid is quenched in situ at high pressure to 300 K. We also study decompression and associated irreversible densification. Our simulations show that the glass at the zero pressure is composed of primarily Si-O tetrahedra, partially linked with each other via the bridging O atoms (present in 35%; the remaining being the non-bridging O atoms). With increasing pressure, the mean Si-O coordination number gradually increases to 6, with fivefold and subsequently sixfold replacing tetrahedra as the most abundant coordination environment. The Mg-O coordination comprising of a mixture of four-, five-, and sixfold species at zero pressure picks up more high-coordination (seven- to ninefold) species on compression and its mean value increases from 4.5 to 8 over the entire pressure range studied. Consistently, the anion-cation coordination numbers increase on compression with appearance of oxygen tri-clusters (three silicon coordinated O atoms) and mean O-Si coordination eventually reaching 2. Hot compression produces greater densities and higher coordination numbers at all pressures as compared with cold compression, reflecting kinetic hindrances to structural changes. On decompression from 6 GPa, the glass regains its initial uncompressed structure with almost no residual density. Decompression from 27 GPa produces significant irreversible compaction, and the peak-pressure of decompression significantly influences the degree of density retention with as high as 15% residual density on decompression from 170 GPa. Irreversibility arises from the survival of high coordination species to zero pressure on decompression. With increasing pressure, the calculated compressional and shear wave velocities (about 5 and 3 km/s at the ambient conditions) of MgSiO3 glass increase initially rapidly and then more gradually at high pressures. Our results suggest that hot-compressed glasses perhaps provide closer analog to high-pressure silicate melts than the glass on cold compression.

Journal ArticleDOI
TL;DR: In this article, the authors presented new Mossbauer data on 63 different phosphate samples, and integrated them with data on more than 37 phosphate species in 62 other studies from the literature.
Abstract: Phosphate minerals, while relatively rare, show a broad range of crystal structure types with linkages among PO 4 tetrahedra mimicking the hierarchy of polymerization of SiO 4 tetrahedra seen in silicate minerals. To augment previous Mossbauer studies of individual phosphate species and groups of species, this paper presents new Mossbauer data on 63 different phosphate samples, and integrates them with data on more than 37 phosphate species in 62 other studies from the literature. Variations in Mossbauer parameters of different sites in each mineral are then related to both the local polyhedral environment around the Fe cations and the overall structural characteristics of each species. The entire aggregated Mossbauer data set on phosphate minerals is juxtaposed against parameters obtained for spectra from the MIMOS spectrometers on Mars. This comparison demonstrates that signatures from many different phosphate or sulfate mineral species could also be contributing to Mars Mossbauer spectra. Results underscore the conclusion that unique mineral identifications are generally not possible from Mossbauer data alone, particularly for paramagnetic phases, although combining Mossbauer results with other data sets enables a greater level of confidence in constraining mineralogy. This study provides a wealth of new data on Fe-bearing phosphate minerals to bolster future analyses of Mossbauer spectra acquired on Mars.

Journal ArticleDOI
TL;DR: In this paper, the phase relations in FeCr 2 O 4 spinel spinels were determined at 12-28 GPa and 800-1600 °C using a multi-anvil apparatus.
Abstract: We determined phase relations in FeCr 2 O 4 at 12–28 GPa and 800–1600 °C using a multi-anvil apparatus. At 12–16 GPa, FeCr 2 O 4 spinel (chromite) first dissociates into two phases: a new Fe 2 Cr 2 O 5 phase + Cr 2 O 3 with the corundum structure. At 17–18 GPa, the two phases combine into CaFe 2 O 4 -type and CaTi 2 O 4 -type FeCr 2 O 4 below and above 1300 °C, respectively. Structure refinements using synchrotron X-ray powder diffraction data confirmed the CaTi 2 O 4 -structured FeCr 2 O 4 ( Cmcm ), and indicated that the Fe 2 Cr 2 O 5 phase is isostructural to a modified ludwigite-type Mg 2 Al 2 O 5 ( Pbam ). In situ high-pressure high-temperature X-ray diffraction experiments showed that CaFe 2 O 4 -type FeCr 2 O 4 is unquenchable and is converted into another FeCr 2 O 4 phase on decompression. Structural analysis based on synchrotron X-ray powder diffraction data with transmission electron microscopic observation clarified that the recovered FeCr 2 O 4 phase has a new structure related to CaFe 2 O 4 -type. The high-pressure phase relations in FeCr 2 O 4 reveal that natural FeCr 2 O 4 -rich phases of CaFe 2 O 4 - and CaTi 2 O 4 -type structures found in the shocked Suizhou meteorite were formed above about 18 GPa at temperature below and above 1300 °C, respectively. The phase relations also suggest that the natural chromitites in the Luobusa ophiolite previously interpreted as formed in the deep-mantle were formed at pressure below 12–16 GPa.

Journal ArticleDOI
TL;DR: In this article, a new scheme of elastic modeling with equation of state (EOS) of quartz and garnet was proposed, which takes into account the pressure-and temperature-dependency of compressibility and expansivity.
Abstract: Raman spectra of quartz inclusions in garnet hosts of low-pressure/temperature metamorphic rocks from the Yanai district in the Ryoke belt (around 0.1–0.3 GPa/500–600 °C), Southwest Japan, exhibit frequency (peak position) shifts toward lower wavenumbers as compared to those of a quartz standard measured at ambient conditions. The observed negative frequency shifts indicate that tensile normal stress is exerted on the quartz–garnet boundary and therefore, quartz inclusions are subjected to negative residual pressure. Elastic modeling that assumed the constant elastic properties of minerals cannot explain this negative residual pressure. This study estimated the residual pressure based on a new scheme of elastic modeling with equation of state (EOS) of quartz and garnet, which takes into account the pressure- and temperature-dependency of compressibility and expansivity. The calculated residual pressure was converted into frequency shifts of quartz Raman spectrum based on the experimentally determined relation. The results showed that the quartz inclusions in garnets retain residual pressure of about −0.3 GPa, and logically reproduced the observed frequency shifts in the direction of lower wavenumbers. The new elastic modeling also simulates positive frequency shifts retained by quartz inclusions in garnets of high-pressure metamorphic rocks from the Sambagawa metamorphic belt in Southwest Japan, and from the Motagua fault zone in Guatemala. The degree and direction of Raman frequency shifts of quartz inclusion in garnet depend on metamorphic conditions when the quartz was included in the host garnet. Conversely, the metamorphic conditions prevailing when a set of a quartz inclusion and garnet host was recrystallized can be inferred from Raman frequency shifts of quartz inclusion in garnet. The proposed Raman spectroscopic analysis should be a powerful and useful tool to decipher information at earlier stage of garnet growth even in samples of highly recrystallized matrix phases during exhumation and retrograde stages.

Journal ArticleDOI
TL;DR: In this paper, the authors derived thermal equation of state (EoS) parameters and the spin-crossover diagram of Magnesiosiderite across the spin transition, showing that the spin crossover broadened and shifted toward higher pressures at elevated temperatures.
Abstract: In situ synchrotron X-ray diffraction experiments on natural magnesiosiderite [(Mg 0.35 Fe 0.65 )CO 3 ] were conducted using resistive and laser-heated diamond-anvil cells (DACs) up to 78 GPa and 1200 K. Based on thermal elastic modeling of the measured pressure-volume curves at given temperatures, we have derived thermal equation of state (EoS) parameters and the spin-crossover diagram of magnesiosiderite across the spin transition. These results show the spin crossover broadened and shifted toward higher pressures at elevated temperatures. Low-spin magnesiosiderite is 6% denser and 8% more incompressible than the high-spin phase at 1200 K and high pressures. Within the spin crossover from 53 to 63 GPa at 1200 K, magnesiosiderite exhibits anomalous thermal elastic behaviors, including a dramatic increase in the thermal expansion coefficient by a factor of 20 and a drop in the isothermal bulk modulus and the bulk sound velocity by approximately 75 and 50%, respectively. Compared with the end-member magnesite [MgCO 3 ] at relevant pressure-temperature conditions of the subducted slabs, the high-spin magnesiosiderite with 65 mol% FeCO 3 is approximately 21–23% denser and its unit-cell volume is 2–4% larger, whereas the low-spin state is 28–29% denser and 2% smaller than the end-member magnesite. Since ferromagnesite with 20 mol% of iron has been proposed to be a potential deep-carbon carrier, our results here indicate that the dense low-spin ferromagnesite can become more stable than high-spin ferromagnesite at pressures above approximately 50 GPa, providing a mechanism for (MgFe)-bearing carbonate to be a major carbon host in the deeper lower mantle.

Journal ArticleDOI
TL;DR: In this paper, the chemical zoning in dolomite is well defined by a continuous core-to-rim Mg increase and Fe-Mn decrease, which is interpreted as prograde growth zoning, which developed during subduction of carbonate-bearing oceanic crust.
Abstract: Dolomite with compositional zoning was discovered in carbonate-lawsonite-bearing eclogites in the Tianshan (ultra-)high-pressure/low-temperature metamorphic belt, northwestern China. The eclogite-facies dolomite occurs as matrix porphyroblast and as inclusion in garnet, both of which display the same chemical zoning pattern. The dolomite contains inclusions of calcite (probably after aragonite), magnesite, glaucophane, lawsonite (and its pseudomorphs), allanite, epidote, paragonite, phengite, and omphacite. The chemical zoning in dolomite is well defined by a continuous core-to-rim Mg increase and Fe-Mn decrease. The concentrations of transition metal elements, REE, and Y also decrease from core to rim of the dolomite. Thermodynamic modeling demonstrates that the Fe-Mg zoning of dolomite is largely temperature dependent and, thus, is interpreted as prograde growth zoning, which developed during subduction of carbonate-bearing oceanic crust. It is suggested that dolomite in equilibrium with garnet formed as a result of changing matrix compositions due to increasing temperatures. In addition, thermodynamic modeling demonstrates that during subduction at high-pressure conditions prograde-formed aragonite and dolomite were transformed to dolomite and magnesite. Furthermore, Fe-rich magnesite inclusions in matrix dolomite and in dolomite inclusions in garnet are shown to have formed during high-pressure conditions prior to peak metamorphic conditions and, therefore caution is warranted using Fe-bearing magnesite occurrences in eclogite-facies rocks as an unambiguous ultrahigh pressure indicator as previously suggested.

Journal ArticleDOI
TL;DR: In this article, the authors used secondary ion mass spectrometry (SIMS) to estimate the uncertainties in volatile concentrations of melt inclusions determined by SIMS analysis, and the results suggest that trends showing variable CO2 and relatively uniform H2O obtained from MI may not represent trapping of volatile-saturated melts over a range of pressure, and care must be taken when interpreting volatile contents of MI to infer magma degassing paths.
Abstract: Many studies have used melt inclusions (MI) to track the pre-eruptive volatile history of magmas. Often, the volatile contents of the MI show wide variability, even for MI hosted in the same phenocryst. This variability is usually interpreted to represent trapping of a volatile-saturated melt over some range of pressures (depths) and these data are in turn used to define a magma degassing path. In this study, groups of MI that were all trapped at the same time (referred to as a melt inclusion assemblage or MIA) based on petrographic evidence, were analyzed to test the consistency of the volatile contents of MI that were all trapped simultaneously from the same melt. MIA hosted in phenocrysts from White Island (New Zealand) and from the Solchiaro eruption on the Island of Procida (Italy) were analyzed by secondary ion mass spectrometry (SIMS). In most MIA, H2O, F, and Cl abundances for all MI within the MIA are consistent (relative standard errors <27%, with the exception of two MIA), indicating that the MI all trapped a melt with the same H2O, F, and Cl concentrations and that the composition was maintained during storage in the magma as well as during and following eruption. In several MIA, S abundances are consistent (relative standard errors <33%, with the exception of five out of 28 MIA). Conversely, CO2 (White Island and Solchiaro MIA) showed wide variability in several MIA. The result is that some MIA display a wide range in CO2 content at approximately constant H2O. Similar trends have previously been interpreted to represent degassing paths, produced as volatile-saturated melts are trapped over some significant pressure (depth) range in an ascending (or convecting) magma body. However, the CO2 vs. H2O trends obtained in this study cannot represent degassing paths because the MI were all trapped at the same time (same MIA). This requires that all of the MI within the MIA trapped a melt of the same composition (including volatile content) and at the same temperature and pressure (depth). The cause of the variable concentration of CO2 within some MIA is unknown, but may reflect micrometer-scale heterogeneities within the melt during trapping, heterogeneities within individual MI, post-entrapment crystallization within the MI, or C-contamination during sample preparation. These results suggest that trends showing variable CO2 and relatively uniform H2O obtained from MI may not represent trapping of volatile-saturated melts over a range of pressure, and care must be taken when interpreting volatile contents of MI to infer magma degassing paths. Results of this study have been used to estimate the uncertainties in volatile concentrations of MI determined by SIMS analysis. The H2O, F, and Cl contents have an average estimated uncertainty of 11, 9, and 12%, respectively, which is consistent with the SIMS analytical error. In contrast, the S and CO2 contents have an average estimated uncertainty of 24 and 69%, respectively, which is considerably larger than the SIMS analytical error.

Journal ArticleDOI
TL;DR: Oscillatory zoning in silicate minerals, especially plagioclase, is a common feature found in volcanic rocks from various terrestrial tectonic settings, but is nearly absent in the lunar environment as mentioned in this paper.
Abstract: Oscillatory zoning in silicate minerals, especially plagioclase, is a common feature found in volcanic rocks from various terrestrial tectonic settings, but is nearly absent in the lunar environment. Here we report backscattered electron images, quantitative wavelength-dispersive spectrometry (WDS) analyses, and qualitative WDS elemental X-ray maps that reveal oscillatory zoning of Mg, Ca, Fe, Ti, Al, Cr, and Mn in euhedral pyroxene phenocrysts, and faint oscillatory zoning of P in olivine phenocrysts in basaltic lunar meteorite Northwest Africa (NWA) 032. This is only the third known occurrence of oscillatory zoning in lunar silicate minerals. Zoning bands in pyroxene range from ~3–5 μm up to ~60 μm in width, but are typically ~10–20 μm in width. Oscillatory bands are variable in width over short distances, often within a single grain. Most oscillatory bands preserve a euhedral form and have sharp edges; however some bands have jagged or uneven edges indicative of resorption surfaces. The short-scale oscillatory nature of the zoning in pyroxene is overprinted on longer-scale core to rim normal magmatic zoning from pigeonite to augite compositions. Oscillatory zoning of P in olivine is faint and only resolvable with high beam current (400 nA) mapping. Bands of higher P are typically only a few micrometers in width, and although they preserve a euhedral form, they are not traceable around the full circumference of a grain and have variable spacing. Resorption surfaces, longer-scale normal magmatic zoning, and relatively thick oscillatory bands are indicative of the formation of these chemical oscillations as a result of variable magma composition. Pyroxenes likely experienced variable liquid compositions as a result of convection in a differentially cooling, chemically stratified magma chamber. Periodic replenishments of progressively decreasing volumes of primitive parental magma are also permissible and may have enabled convection. In a convection model, Mg-rich bands reflect growth in the lower, warmer, more crystal-poor regions of the chamber, whereas Ca-Al-Ti-Cr-rich bands reflect growth in the upper, cooler, more crystal-rich regions of the chamber. The limited duration of crystallization in the magma chamber and the slow diffusion rates of multiple elements among multiple crystallographic sites in clinopyroxene, combined with fast cooling upon eruption, act to preserve the oscillatory zoning. Oscillatory zoning of P in olivine is a product of solute trapping resulting from the slow diffusion of P in silicate melts and minerals, and relatively fast magma cooling rates that may be related to magma chamber convection. Differential cooling of the chamber and the fast cooling rates within the chamber are likely a product of the thermal state of the lunar crust at 2.93 Ga when NWA 032, which is currently the youngest dated lunar igneous rock, erupted onto the surface of the Moon.

Journal ArticleDOI
Abstract: In this study, we have used electron-microprobe mapping to investigate plagioclase compositional evolution due to cooling kinetics. We re-analyzed five run-products from a prior study (Iezzi et al. 2011), crystallized by cooling a natural andesitic melt from 1300 to 800 °C at 25, 12.5, 3, 0.5, and 0.125 °C/min under atmospheric pressure and air redox state. As the cooling rate decreases, the texture of large plagioclases changes from skeletal to hollow to nearly equant. In this study, we use X-ray map data to obtain a database of 12 275 quantitative chemical analyses. The frequency of An-rich plagioclases showing disequilibrium compositions substantially increases with increasing cooling rate. At 25 and 12.5 °C/min the distribution is single-mode and narrow, at 0.5 and 0.125 °C/min is single-mode but very broad, whereas at the intermediate cooling rate of 3 °C/min two distinct plagioclase populations are present. This intermediate cooling rate is fast enough to cause departure from equilibrium for the crystallization of the An-rich population but also sufficiently slow that An-poor plagioclases nucleate from the residual melt. We interpret our findings in the context of time-temperature-transformation (TTT) diagrams, and infer the crystallization kinetics of plagioclase in the experiments. Compositional trends and our inferences regarding TTT systematics are consistent with two discrete nucleation events that produced separate populations of plagioclase (i.e., An-rich and An-poor populations) at 3 °C/min. Using plagioclase-melt pairs as input data for the thermometric reaction between An and Ab components, we find that plagioclase mirrors very high- (near-liquidus) crystallization temperatures with increasing cooling rate. These results have important implications for the estimate of post-eruptive solidification conditions. Lava flows and intrusive bodies from centimeters to a few meters thick are characterized by a short solidification time and a significant thermal diffusion. Under such circumstances, it is possible to crystallize plagioclases with variable and disequilibrium chemical compositions simply by cooling a homogeneous andesitic melt. X-ray element maps enrich the study of plagioclase compositional variations generated under conditions of rapid cooling.

Journal ArticleDOI
TL;DR: A global spectral survey of 4506 immature craters with diameters < 1 km was carried out using near-IR data from the Kaguya Spectral Profiler to characterize the composition of the lunar megaregolith as mentioned in this paper.
Abstract: A global spectral survey of 4506 immature craters with diameters <1 km was carried out using near-IR data from the Kaguya Spectral Profiler to characterize the composition of the lunar megaregolith. On the basis of band minima and radiative transfer mixing models, small crater spectra fall into three groups: (1) mare basalts with strong absorptions at relatively long wavelengths indicating high ratios of high- to low-Ca pyroxene; (2) norites containing about 50% plagioclase and with pyroxene assemblages dominated by low-Ca pyroxene that occur within the South Pole-Aitken Basin (SPA), near Apollo 14 and other locations near Imbrium Basin, and three major cryptomaria deposits; and (3) noritic anorthosites occurring within the Feldspathic Highlands Terrane containing about 20 wt% pyroxene with a pyroxene assemblage containing exclusively very low-Ca pyroxene. Very few pure anorthosites are present in this survey and there are no occurrences of pyroxene-poor olivine-rich assemblages. Models of the composition of basin ejecta incorporate large amounts of mantle material and the spectral results require that that the sampled mantle is orthopyroxenite. Basin depth-diameter ratios used in the models required to match the measured composition are consistent with prior estimates for the largest basins. The composition found in the SPA and Imbrium regions are consistent with mafic impact melt breccias or basaltic impact melts of basin origin. For SPA we model this composition and find it requires an extremely low impact angle. While this is consistent with prior work on an oblique impact for the SPA event, a more robust solution invokes the production of norite in impact melt seas.

Journal ArticleDOI
TL;DR: The first observation of merwinite (Ca 2.85 Mg 0.96 Fe 0.14 ) 2 SiO 4 olivine in a diamond from the Sao Luiz river alluvial deposits (Juina, Brazil) was reported in this article.
Abstract: Diamonds from Juina province, Brazil, and some others localities reveal the existence of a deep, Ca-rich carbonate-silicate source different from ultramafic and eclogite compositions. In this study, we describe the first observation of merwinite (Ca 2.85 Mg 0.96 Fe 0.11 Si 2.04 O 8 ) in a diamond; it occurs as an inclusion in the central growth domain of a diamond from the Sao Luiz river alluvial deposits (Juina, Brazil). In addition, the diamond contains inclusions of walstromite-structured CaSiO 3 in the core and (Mg 0.86 Fe 0.14 ) 2 SiO 4 olivine in the rim. According to available experimental data, under mantle conditions, merwinite can only be formed in a specific Ca-rich and Mg- and Si-depleted enviroment that differs from any known mantle lithology (peridotitic or eclogitic). We suggest that such chemical conditions can occur during the interaction of subduction-derived calcium carbonatite melt with peridotitic mantle. The partial reduction of the melt could cause the simultaneous crystallization of Ca-rich silicates (CaSiO 3 and merwinite) and diamond at an early stage, and (Mg 0.86 Fe 0.14 ) 2 SiO 4 olivine and diamond at a later stage, after the Ca-Mg exchange between carbonatite melt and peridotite has ceased. This scenario is supported by the presence of calcite microinclusions within merwinite.

Journal ArticleDOI
TL;DR: In this article, the replacement of chalcopyrite by bornite under hydrothermal conditions in solutions containing Cu(I) and hydrosulfide over the temperature range 200-320 °C at autogenous pressures was reported.
Abstract: We report the replacement of chalcopyrite by bornite under hydrothermal conditions in solutions containing Cu(I) and hydrosulfide over the temperature range 200–320 °C at autogenous pressures. Chalcopyrite was replaced by bornite under all studied conditions. The reaction proceeds via an interface coupled dissolution-reprecipitation (ICDR) mechanism and via additional overgrowth of bornite from the bulk solution. Initially, the reaction is fast and results in a bornite rim of homogeneous thickness. Reaction rates then slow down, probably reflecting healing of the porosity, and the reaction proceeds predominantly along twin boundaries of the chalcopyrite. The composition of the bornite product is generally Cu-rich, corresponding to the bornite-digenite (Cu5FeS4-Cu9S5; Bn-Dg) solid solution (bdss). The Cu and Fe contents were controlled principally by temperature, with solution pH having only a small effect. The percentage of Cu in bdss decreased and the percentage of Fe increased with increasing reaction temperature: at 200 °C a composition of Bn47Dg53 was obtained; at 300 °C the composition was Bn90Dg10 and at 320 °C it was near-stoichiometric bornite. The influence of temperature rather than solution chemistry on the composition of bdss, as well as the homogeneity of the bornite product grown both via replacement of chalcopyrite and from the bulk solution as overgrowth, are interpreted to reflect buffering of the bornite activity in bdss via solids (e.g., reaction chalcopyrite + 2 chalcocite = bornite). Only the end-member compositions of the bdss are found in nature, indicating that the products obtained are metastable, and illustrating the importance of reaction mechanism for controlling the chemistry of the mineral product. The unique features of the chalcopyrite to bornite reaction investigated here are related to interaction between a solution controlled ICDR reaction with solid-state diffusion processes driving porosity healing.