scispace - formally typeset
Search or ask a question

Showing papers in "Analytical and Bioanalytical Chemistry in 2008"


Journal ArticleDOI
TL;DR: This review will introduce the currently relevant microfabrication technologies such as replication methods like hot embossing, injection molding, microthermoforming and casting as well as photodefining methods like lithography and laser ablation for microfluidic systems and discuss academic and industrial considerations for their use.
Abstract: Polymers have assumed the leading role as substrate materials for microfluidic devices in recent years. They offer a broad range of material parameters as well as material and surface chemical properties which enable microscopic design features that cannot be realised by any other class of materials. A similar range of fabrication technologies exist to generate microfluidic devices from these materials. This review will introduce the currently relevant microfabrication technologies such as replication methods like hot embossing, injection molding, microthermoforming and casting as well as photodefining methods like lithography and laser ablation for microfluidic systems and discuss academic and industrial considerations for their use. A section on back-end processing completes the overview.

840 citations


Journal ArticleDOI
TL;DR: An overview of 20 years of worldwide development in the field of biosensors based on special types of surface acoustic wave devices that permit the highly sensitive detection of biorelevant molecules in liquid media is presented.
Abstract: This review presents an overview of 20 years of worldwide development in the field of biosensors based on special types of surface acoustic wave (SAW) devices that permit the highly sensitive detection of biorelevant molecules in liquid media (such as water or aqueous buffer solutions). 1987 saw the first approaches, which used either horizontally polarized shear waves (HPSW) in a delay line configuration on lithium tantalate (LiTaO3) substrates or SAW resonator structures on quartz or LiTaO3 with periodic mass gratings. The latter are termed “surface transverse waves” (STW), and they have comparatively low attenuation values when operated in liquids. Later Love wave devices were developed, which used a film resonance effect to significantly reduce attenuation. All of these sensor approaches were accompanied by the development of appropriate sensing films. First attempts used simple layers of adsorbed antibodies. Later approaches used various types of covalently bound layers, for example those utilizing intermediate hydrogel layers. Recent approaches involve SAW biosensor devices inserted into compact systems with integrated fluidics for sample handling. To achieve this, the SAW biosensors can be embedded into micromachined polymer housings. Combining these two features will extend the system to create versatile biosensor arrays for generic lab use or for diagnostic purposes.

731 citations


Journal ArticleDOI
TL;DR: The focus of this review is on the application of this transduction method for sensing purposes and examples of its use in combination with enzymes, antibodies, DNA and with cells will be described.
Abstract: This review introduces the basic concepts and terms associated with impedance and techniques of measuring impedance. The focus of this review is on the application of this transduction method for sensing purposes. Examples of its use in combination with enzymes, antibodies, DNA and with cells will be described. Important fields of application include immune and nucleic acid analysis. Special attention is devoted to the various electrode design and amplification schemes developed for sensitivity enhancement. Electrolyte insulator semiconductor (EIS) structures will be treated separately.

731 citations


Journal ArticleDOI
TL;DR: The evolving use of aptamers in specific analytical applications such as chromatography, ELISA-type assays, biosensors and affinity PCR as well as current avenues of research and future perspectives conclude this review.
Abstract: Aptamers are artificial nucleic acid ligands, specifically generated against certain targets, such as amino acids, drugs, proteins or other molecules. In nature they exist as a nucleic acid based genetic regulatory element called a riboswitch. For generation of artificial ligands, they are isolated from combinatorial libraries of synthetic nucleic acid by exponential enrichment, via an in vitro iterative process of adsorption, recovery and reamplification known as systematic evolution of ligands by exponential enrichment (SELEX). Thanks to their unique characteristics and chemical structure, aptamers offer themselves as ideal candidates for use in analytical devices and techniques. Recent progress in the aptamer selection and incorporation of aptamers into molecular beacon structures will ensure the application of aptamers for functional and quantitative proteomics and high-throughput screening for drug discovery, as well as in various analytical applications. The properties of aptamers as well as recent developments in improved, time-efficient methods for their selection and stabilization are outlined. The use of these powerful molecular tools for analysis and the advantages they offer over existing affinity biocomponents are discussed. Finally the evolving use of aptamers in specific analytical applications such as chromatography, ELISA-type assays, biosensors and affinity PCR as well as current avenues of research and future perspectives conclude this review.

557 citations


Journal ArticleDOI
TL;DR: The elimination routes for the 200 drugs that are sold most often by prescription count in the United States were investigated and Clinically well-established polymorphic CYPs were involved in the metabolism of approximately half of those drugs, including NSAIDs metabolized mainly by CYP2C9, proton-pump inhibitors metabolized by CYD2C19, and beta blockers and several antipsychotics and antidepressants metabolizing by CYB2D6.
Abstract: We investigated the elimination routes for the 200 drugs that are sold most often by prescription count in the United States. The majority (78%) of the hepatically cleared drugs were found to be subject to oxidative metabolism via cytochromes P450 of the families 1, 2 and 3, with major contributions from CYP3A4/5 (37% of drugs) followed by CYP2C9 (17%), CYP2D6 (15%), CYP2C19 (10%), CYP1A2 (9%), CYP2C8 (6%), and CYP2B6 (4%). Clinically well-established polymorphic CYPs (i.e., CYP2C9, CYP2C19, and CYP2D6) were involved in the metabolism of approximately half of those drugs, including (in particular) NSAIDs metabolized mainly by CYP2C9, proton-pump inhibitors metabolized by CYP2C19, and beta blockers and several antipsychotics and antidepressants metabolized by CYP2D6. In this review, we provide an up-to-date summary of the functional polymorphisms and aspects of the functional genomics of the major human drug-metabolizing cytochrome P450s, as well as their clinical significance.

544 citations


Journal ArticleDOI
TL;DR: Gold nanoparticles show easily tuned physical properties, including unique optical properties, robustness, and high surface areas, making them ideal candidates for developing biomarker platforms and give gold nanoparticles advantages over conventional detection methods currently used in clinical diagnostics.
Abstract: The impact of advances in nanotechnology is particularly relevant in biodiagnostics, where nanoparticle- based assays have been developed for specific detection of bioanalytesofclinicalinterest.Goldnanoparticlesshoweasily tuned physical properties, including unique optical properties, robustness, and high surface areas, making them ideal candidates for developing biomarker platforms. Modulation of these physicochemical properties can be easily achieved by adequate synthetic strategies and give gold nanoparticles advantages over conventional detection methods currently used in clinical diagnostics. The surface of gold nanoparticles can be tailored by ligand functionalization to selectively bind biomarkers. Thiol-linking of DNA and chemical functional- ization of gold nanoparticles for specific protein/antibody binding are the most common approaches. Simple and inexpensive methods based on these bio-nanoprobes were initially applied for detection of specific DNA sequences and are presently being expanded to clinical diagnosis.

491 citations


Journal ArticleDOI
TL;DR: Semiconductor quantum dots and metal nanoparticles have extensive applications, e.g., in vitro and in vivo bioimaging, and toxic effects of NPs and their clearance from the body are discussed.
Abstract: We review the syntheses, optical properties, and biological applications of cadmium selenide (CdSe) and cadmium selenide-zinc sulfide (CdSe-ZnS) quantum dots (QDs) and gold (Au) and silver (Ag) nanoparticles (NPs). Specifically, we selected the syntheses of QDs and Au and Ag NPs in aqueous and organic phases, size- and shape-dependent photoluminescence (PL) of QDs and plasmon of metal NPs, and their bioimaging applications. The PL properties of QDs are discussed with reference to their band gap structure and various electronic transitions, relations of PL and photoactivated PL with surface defects, and blinking of single QDs. Optical properties of Ag and Au NPs are discussed with reference to their size- and shape-dependent surface plasmon bands, electron dynamics and relaxation, and surface-enhanced Raman scattering (SERS). The bioimaging applications are discussed with reference to in vitro and in vivo imaging of live cells, and in vivo imaging of cancers, tumor vasculature, and lymph nodes. Other aspects of the review are in vivo deep tissue imaging, multiphoton excitation, NIR fluorescence and SERS imaging, and toxic effects of NPs and their clearance from the body.

490 citations


Journal ArticleDOI
TL;DR: In this review, recent developments in SERS spectroscopy are discussed and their impact on different research fields are discussed.
Abstract: Raman spectroscopy is a valuable tool in various research fields. The technique yields structural information from all kind of samples often without the need for extensive sample preparation. Since the Raman signals are inherently weak and therefore do not allow one to investigate substances in low concentrations, one possible approach is surface-enhanced (resonance) Raman spectroscopy. Here, rough coin metal surfaces enhance the Raman signal by a factor of 10(4)-10(15), depending on the applied method. In this review we discuss recent developments in SERS spectroscopy and their impact on different research fields.

481 citations


Journal ArticleDOI
TL;DR: The main aim of the presented research is to introduce a new technique, ultra performance liquid chromatography–positive/negative electrospray tandem mass spectrometry (UPLC–ESI/MS/MS), for the development of new simultaneous multiresidue methods (over 50 compounds).
Abstract: The main aim of the presented research is to introduce a new technique, ultra performance liquid chromatography-positive/negative electrospray tandem mass spectrometry (UPLC-ESI/MS/MS), for the development of new simultaneous multiresidue methods (over 50 compounds). These methods were used for the determination of multiple classes of pharmaceuticals (acidic, basic and neutral compounds: analgesic/anti-inflammatory drugs, antibiotics, antiepileptics, beta-adrenoceptor blocking drugs, lipid regulating agents, etc.), personal care products (sunscreen agents, preservatives, disinfectant/antiseptics) and illicit drugs (amphetamine, cocaine and benzoylecgonine) in surface water and wastewater. The usage of the novel UPLC system with a 1.7 microm particle-packed column allowed for good resolution of analytes with the utilisation of low mobile phase flow rates (0.05-0.07 mL min(-1)) and short retention times (method times of up to 25 min), delivering a fast and cost-effective method. SPE with the usage of Oasis MCX strong cation-exchange mixed-mode polymeric sorbent was chosen for sample clean-up and concentration. The influence of mobile phase composition, matrix-assisted ion suppression in ESI-MS and SPE recovery on the sensitivity of the method was extensively studied. The method limits of quantification were at low nanogram per litre levels and ranged from tenths of ng L(-1) to tens of ng L(-1) in surface water and from single ng L(-1) to a few hundreds of ng L(-1) in the case of wastewater. The instrumental and method intraday and interday repeatabilities were on average less than 5%. The method was successfully applied for the determination of pharmaceuticals in the River Taff (South Wales) and a wastewater treatment plant (WWTP Cilfynydd). Several pharmaceuticals and personal care products were determined in river water at levels ranging from single ng L(-1) to single microg L(-1).

300 citations


Journal ArticleDOI
TL;DR: In this paper, the most commonly used generic PCA cross-validation schemes are reviewed and how well they work in various scenarios are assessed.
Abstract: In regression, cross-validation is an effective and popular approach that is used to decide, for example, the number of underlying features, and to estimate the average prediction error. The basic principle of cross-validation is to leave out part of the data, build a model, and then predict the left-out samples. While such an approach can also be envisioned for component models such as principal component analysis (PCA), most current implementations do not comply with the essential requirement that the predictions should be independent of the entity being predicted. Further, these methods have not been properly reviewed in the literature. In this paper, we review the most commonly used generic PCA cross-validation schemes and assess how well they work in various scenarios.

293 citations


Journal ArticleDOI
TL;DR: Each of these four areas is discussed in detail in terms of the progress of development, the continuing limitations, and potential future directions for microflow cytometers.
Abstract: Recent developments in microflow cytometry have concentrated on advancing technology in four main areas: (1) focusing the particles to be analyzed in the microfluidic channel, (2) miniaturization of the fluid-handling components, (3) miniaturization of the optics, and (4) integration and applications development. Strategies for focusing particles in a narrow path as they pass through the detection region include the use of focusing fluids, nozzles, and dielectrophoresis. Strategies for optics range from the use of microscope objectives to polymer waveguides or optical fibers embedded on-chip. While most investigators use off-chip fluidic control, there are a few examples of integrated valves and pumps. To date, demonstrations of applications are primarily used to establish that the microflow systems provide data of the same quality as laboratory systems, but new capabilities—such as automated sample staining—are beginning to emerge. Each of these four areas is discussed in detail in terms of the progress of development, the continuing limitations, and potential future directions for microflow cytometers.

Journal ArticleDOI
TL;DR: This review covers the literature on aptamer immobilization up to March 2007, including comparison of different linkers of varying size and chemical structure, 3′ versus 5′ attachment, and regeneration methods of aptamers on surfaces.
Abstract: In this review we examine various methods for the immobilization of aptamers onto different substrates that can be utilized in a diverse array of analytical formats In most cases, covalent linking to surfaces is preferred over physisorption, which is reflected in the bulk of the reports covered within this review Conjugation of aptamers with appropriate linkers directly to gold films or particles is discussed first, followed by methods for conjugating aptamers to functionally modified surfaces In many aptamer-based applications, silicates and silicon oxide surfaces provide an advantage over metallic substrates, and generally require surface modification prior to covalent attachment of the aptamers Chemical protocols for covalent attachment of aptamers to functionalized surfaces are summarized in the review, showing common pathways employed for aptamer immobilization on different surfaces Biocoatings, such as avidin or one of its derivatives, have been shown to be highly successful for immobilizing biotin-tethered aptamers on various surfaces (eg, gold, silicates, polymers) There are also a few examples reported of aptamer immobilization on other novel substrates, such as quantum dots, carbon nanotubes, and carbohydrates This review covers the literature on aptamer immobilization up to March 2007, including comparison of different linkers of varying size and chemical structure, 3' versus 5' attachment, and regeneration methods of aptamers on surfaces

Journal ArticleDOI
TL;DR: The potential of hydrophilic interaction liquid chromatography (HILIC) as a separation tool in the multidimensional separation of peptides in proteomics applications is reviewed.
Abstract: In proteomics, nanoflow multidimensional chromatography is now the gold standard for the separation of complex mixtures of peptides as generated by in-solution digestion of whole-cell lysates. Ideally, the different stationary phases used in multidimensional chromatography should provide orthogonal separation characteristics. For this reason, the combination of strong cation exchange chromatography (SCX) and reversed-phase (RP) chromatography is the most widely used combination for the separation of peptides. Here, we review the potential of hydrophilic interaction liquid chromatography (HILIC) as a separation tool in the multidimensional separation of peptides in proteomics applications. Recent work has revealed that HILIC may provide an excellent alternative to SCX, possessing several advantages in the area of separation power and targeted analysis of protein post-translational modifications.

Journal ArticleDOI
TL;DR: Reaction products of NHS esters were observed not only with lysines, but also with serines, tyrosines, and threonines, which should be scrutinized during data analysis using customized software when NHS esterns are employed for chemical cross-linking.
Abstract: In this report we summarize our experiences with the reaction products of N-hydroxysuccinimide (NHS) esters, which are widely used for chemical cross-linking of lysine residues in proteins. We describe the products, which should be scrutinized during data analysis using customized software when NHS esters are employed for chemical cross-linking. Reaction products of NHS esters were observed not only with lysines, but also with serines, tyrosines, and threonines. This report is intended to be a practical guide for those working in the field of chemical cross-linking and mass spectrometry.

Journal ArticleDOI
TL;DR: This review summarizes the nanoscale biosensors that use aptamers as molecular recognition elements and the advantages of aptamer over antibodies as sensors are highlighted.
Abstract: Recent advances in nanotechnology have enabled the development of nanoscale sensors that outperform conventional biosensors. This review summarizes the nanoscale biosensors that use aptamers as molecular recognition elements. The advantages of aptamers over antibodies as sensors are highlighted. These advantages are especially apparent with electrical sensors such as electrochemical sensors or those using field-effect transistors.

Journal ArticleDOI
TL;DR: Evaluation of the CCβ values and the linearity results demonstrates that the developed method shows adequate sensitivity and linearity to provide quantitative results and is accurate enough to differentiate between suspected and negative samples or drug concentrations below or above the MRL.
Abstract: Ultra-performance liquid chromatography combined with time-of-flight mass spectrometry (UPLC–ToF-MS) has been used for screening and quantification of more than 100 veterinary drugs in milk The veterinary drugs represent different classes including benzimidazoles, macrolides, penicillins, quinolones, sulphonamides, pyrimidines, tetracylines, nitroimidazoles, tranquillizers, ionophores, amphenicols and non-steroidal anti-inflammatory agents (NSAIDs) After protein precipitation, centrifugation and solid-phase extraction (SPE), the extracts were analysed by UPLC–ToF-MS From the acquired full scan data the drug-specific ions were extracted for construction of the chromatograms and evaluation of the results The analytical method was validated according to the EU guidelines (2002/657/EC) for a quantitative screening method At the concentration level of interest (MRL level) the results for repeatability (%RSD < 20% for 86% of the compounds), reproducibility (%RSD < 40% for 96% of the compounds) and the accuracy (80–120% for 88% of the compounds) were satisfactory Evaluation of the CCβ values and the linearity results demonstrates that the developed method shows adequate sensitivity and linearity to provide quantitative results Furthermore, the method is accurate enough to differentiate between suspected and negative samples or drug concentrations below or above the MRL A set of 100 samples of raw milk were screened for residues No suspected (positive) results were obtained except for the included blind reference sample containing sulphamethazine (88 μg/l) that tested positive for this compound UPLC–ToF-MS combines high resolution for both LC and MS with high mass accuracy which is very powerful for the multi-compound analysis of veterinary drugs The technique seems to be powerful enough for the analysis of not only veterinary drugs but also organic contaminants like pesticides, mycotoxins and plant toxins in one single method

Journal ArticleDOI
TL;DR: FPIA is a homogeneous (without separation) competitive immunoassay method based on the increase in fluorescence polarization of fluorescent-labeled small antigens when bound by specific antibody that is suitable for high-throughput screening (HTS) in a variety of application areas.
Abstract: Fluorescence polarization immunoassay (FPIA) is a homogeneous (without separation) competitive immunoassay method based on the increase in fluorescence polarization (FP) of fluorescent-labeled small antigens when bound by specific antibody. The minimum detectable quantity of FPIAs with fluorescein label (about 0.1 ng analyte) is comparable with chromatography and ELISA methods, although this may be limited by sample matrix interference. Because of its simplicity and speed, FPIA is readily automated and therefore suitable for high-throughput screening (HTS) in a variety of application areas. Systems that involve binding of ligands to receptor proteins are also susceptible to analysis by analogous FP methods employing fluorescent-labeled ligand and HTS applications have been developed, notably for use in candidate drug screening.

Journal ArticleDOI
TL;DR: This paper overviews the application of multivariate curve resolution (optimized by alternating least squares) to spectroscopic data acquired by monitoring chemical reactions and other processes.
Abstract: This paper overviews the application of multivariate curve resolution (optimized by alternating least squares) to spectroscopic data acquired by monitoring chemical reactions and other processes. The goals of the resolution methods and the principles for understanding their applications are described. Some of the problems arising from these evolving systems and the limitations of the multivariate curve resolution methods are also discussed. This article reviews most of the applications of multivariate curve resolution applied to reacting systems published between January 2000 and June 2007. Some basic papers dated before 2000 have also been included.

Journal ArticleDOI
TL;DR: Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years reporting the employment of atmospheric pressure ionization techniques as the most promising approach.
Abstract: Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MSn analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well.

Journal ArticleDOI
TL;DR: A validated method based on solid-phase extraction and liquid chromatography–ion trap tandem mass spectrometry is described for the determination of cocaine and its principal metabolites, benzoylecgonine and ecgonine methyl ester, in waste and surface water in Belgium.
Abstract: A validated method based on solid-phase extraction (SPE) and liquid chromatography–ion trap tandem mass spectrometry (LC-MS/MS) is described for the determination of cocaine (COC) and its principal metabolites, benzoylecgonine (BE) and ecgonine methyl ester (EME), in waste and surface water. Several SPE adsorbents were investigated and the highest recoveries (95.7 ± 5.5, 91.8 ± 2.2 and 72.5 ± 5.3% for COC, BE and EME, respectively) were obtained for OASIS HLB® cartridges (6 mL/500 mg) using 100 mL of waste water or 500 mL of surface water. Extracts were analysed by reversed-phase (RP) or hydrophilic interaction (HILIC) LC-MS/MS in positive ion mode with multiple reactions monitoring (MRM); the latter is the first reported application of the HILIC technique for drugs of abuse in water samples. Corresponding deuterated internal standards were used for quantification. The method limits of quantification (LOQs) for COC and BE were 4 and 2 ng L−1, respectively, when RPLC was used and 1, 0.5 and 20 ng L−1 for COC, BE and EME, respectively, with the HILIC setup. For COC and BE, the LOQs were below the concentrations measured in real water samples. Stability tests were conducted to establish the optimal conditions for sample storage (pH, temperature and time). The degradation of COC was minimal at −20 °C and pH = 2, but it was substantial at +20 °C and pH = 6. The validated method was applied to a set of waste and surface water samples collected in Belgium.

Journal ArticleDOI
TL;DR: Food pathogen detection methods based on electrochemical biosensors, specifically amperometric, potentiometric, and impedimetric biosensor are reviewed with special emphasis on new biorecognition elements, nanomaterials, and lab on a chip technology.
Abstract: The detection and identification of foodborne pathogens continue to rely on conventional culturing techniques. These are very elaborate, time-consuming, and have to be completed in a microbiology laboratory and are therefore not suitable for on-site monitoring. The need for a more rapid, reliable, specific, and sensitive method of detecting a target analyte, at low cost, is the focus of a great deal of research. Biosensor technology has the potential to speed up the detection, increase specificity and sensitivity, enable high-throughput analysis, and to be used for monitoring of critical control points in food production. This article reviews food pathogen detection methods based on electrochemical biosensors, specifically amperometric, potentiometric, and impedimetric biosensors. The underlying principles and application of these biosensors are discussed with special emphasis on new biorecognition elements, nanomaterials, and lab on a chip technology.

Journal ArticleDOI
TL;DR: The state-of-the-art analytical methods for isotopic analysis of Zn and the procedures used to obtain accurate Zn isotope ratio results are discussed and their potential for elucidating sources of atmospheric particles and contamination is assessed.
Abstract: Zinc (Zn) is a trace element that is, as a building block in various enzymes, of vital importance for all living organisms. Zn concentrations are widely determined in dietary, biological and environmental studies. Recent papers report on the first efforts to use stable Zn isotopes in environmental studies, and initial results point to significant Zn isotope fractionation during various biological and chemical processes, and thus highlight their potential as valuable biogeochemical tracers. In this article, we discuss the state-of-the-art analytical methods for isotopic analysis of Zn and the procedures used to obtain accurate Zn isotope ratio results. We then review recent applications of Zn isotope measurements in environmental and life sciences, emphasizing the mechanisms and causes responsible for observed natural variation in the isotopic composition of Zn. We first discuss the Zn isotope variability in extraterrestrial and geological samples. We then focus on biological processes inducing Zn isotope fractionation in plants, animals and humans, and we assess the potential of Zn isotope ratio determination for elucidating sources of atmospheric particles and contamination. Finally, we discuss possible impediments and limitations of the application of Zn isotopes in (geo-) environmental studies and provide an outlook regarding future directions of Zn isotope research.

Journal ArticleDOI
TL;DR: The methods reviewed range from simple colorimetric testing to sophisticated chromatographic separation coupled with detection systems like mass spectrometry, by means of which detailed structural information is obtained, which currently presents the most precise method for rhamnolipid identification and quantification.
Abstract: During the last few decades, increasing interest in biological surfactants led to an intensification of research for the cost-efficient production of biosurfactants compared with traditional petrochemical surface-active components. The quest for alternative production strains also is associated with new demands on biosurfactant analysis. The present paper gives an overview of existing analytical methods, based on the example of rhamnolipids. The methods reviewed range from simple colorimetric testing to sophisticated chromatographic separation coupled with detection systems like mass spectrometry, by means of which detailed structural information is obtained. High-performance liquid chromatography (HPLC) coupled with mass spectrometry currently presents the most precise method for rhamnolipid identification and quantification. Suitable approaches to accelerate rhamnolipid quantification for better control of biosurfactant production are HPLC analysis directly from culture broth by adding an internal standard or Fourier transform infrared attenuated total reflectance spectroscopy measurements of culture broth as a possible quasi-online quantification method in the future. The search for alternative rhamnolipid-producing strains makes a structure analysis and constant adaptation of the existing quantification methods necessary. Therefore, simple colorimetric tests based on whole rhamnolipid content can be useful for strain and medium screening. Furthermore, rhamnolipid purification from a fermentation broth will be considered depending on the following application.

Journal ArticleDOI
TL;DR: An overview on the importance of the NIRS tools in cancer pathology is provided, and in the near future it is envisaged to play a crucial role in cancer diagnosis, treatment decisions, and defining therapeutic drug levels.
Abstract: In recent years, near-infrared spectroscopy (NIRS) has gained importance for non-invasive or minimally invasive diagnostic applications in cancer. This technology is based on differences of endogenous chromophores between cancer and normal tissues using either oxy-haemoglobin or deoxy-haemoglobin, lipid or water bands, or a combination of two or more of these as diagnostic markers. These marker bands provide a basis for the diagnosis and therapy monitoring of several cancers. Various applications also use advances in NIR fluorescence spectroscopy which is based on exogenous contrast-enhancing agents. In this review the literature published during the last seven years has been assessed. It will provide an overview on the importance of the NIRS tools in cancer pathology, and in the near future it is envisaged to play a crucial role in cancer diagnosis, treatment decisions, and defining therapeutic drug levels.

Journal ArticleDOI
TL;DR: It is demonstrated that liquid–liquid or solid-phase extraction of vitamin D metabolites in combination with Diels–Alder derivatization with the commercially available reagent 4-phenyl-1,2,4-triazoline-3,5-dione followed by ultra-performance liquid chromatography–electrospray/tandem mass spectrometry analysis provides rapid and simultaneous quantification of 1α,25-dihydroxyvitamin D3.
Abstract: Biologically active forms of vitamin D are important analytical targets in both research and clinical practice. The current technology is such that each of the vitamin D metabolites is usually analyzed by individual assay. However, current LC-MS technologies allow the simultaneous metabolic profiling of entire biochemical pathways. The impediment to the metabolic profiling of vitamin D metabolites is the low level of 1α,25-dihydroxyvitamin D3 in human serum (15–60 pg/mL). Here, we demonstrate that liquid–liquid or solid-phase extraction of vitamin D metabolites in combination with Diels–Alder derivatization with the commercially available reagent 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) followed by ultra-performance liquid chromatography (UPLC)–electrospray/tandem mass spectrometry analysis provides rapid and simultaneous quantification of 1α,25-dihydroxyvitamin D3, 1α,25-dihydroxyvitamin D2, 24R,25-dihydroxyvitamin D3, 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in 0.5 mL human serum at a lower limit of quantification of 25 pg/mL. Precision ranged from 1.6–4.8 % and 5–16 % for 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3, respectively, using solid-phase extraction.

Journal ArticleDOI
TL;DR: Quantum dots have a number of unique optical properties that are advantageous in the development of bioanalyses based on fluorescence resonance energy transfer (FRET), and existing FRET technologies can be improved by using QDs as energy donors instead of conventional fluorophores.
Abstract: Quantum dots (QDs) have a number of unique optical properties that are advantageous in the development of bioanalyses based on fluorescence resonance energy transfer (FRET). Researchers have used QDs as energy donors in FRET schemes for the analysis of nucleic acids, proteins, proteases, haptens, and other small molecules. This paper reviews these applications of QDs. Existing FRET technologies can potentially be improved by using QDs as energy donors instead of conventional fluorophores. Superior brightness, resistance to photobleaching, greater optimization of FRET efficiency, and/or simplified multiplexing are possible with QD donors. The applicability of the Forster formalism to QDs and the feasibility of using QDs as energy acceptors are also reviewed.

Journal ArticleDOI
TL;DR: A very sensitive hydrophobic assay for proteins (at the nanogram level) is developed using theHydrophobic reagents ammonium sulfate and trichloroacetic acid under pH conditions that increase neutral species concentration in the assay reagent in order to enhance the binding of more CBB dye molecules per protein molecule than in previous CBB-based assays.
Abstract: We investigated the mechanism of Coomassie brilliant blue G-250 (CBB) binding to proteins in order to develop a protein assay with the maximum possible sensitivity. We found that the neutral ionic species of CBB binds to proteins by a combination of hydrophobic interactions and heteropolar bonding with basic amino acids. On the basis of these findings, we developed a very sensitive hydrophobic assay for proteins (at the nanogram level) using the hydrophobic reagents ammonium sulfate and trichloroacetic acid under pH conditions that increase neutral species concentration in the assay reagent in order to enhance the binding of more CBB dye molecules per protein molecule than in previous CBB-based assays.

Journal ArticleDOI
TL;DR: The detection of explosives and related compounds is important in both forensic and environmental applications and a comprehensive review of these methods is presented.
Abstract: The detection of explosives and related compounds is important in both forensic and environmental applications. Luminescence-based methods have been widely used for detecting explosives and their degradation products in complex matrices. Direct detection methods utilize the inherent fluorescence of explosive molecules or the luminescence generated from chemical reactions. Direct detection methods include high-energy excitation techniques such as gamma-ray and x-ray fluorescence, detection of decomposition products by fluorescence or chemiluminescence, and detection following reduction to amines or another reaction to produce fluorescent products from the explosive. Indirect detection methods utilize the interference caused by the presence of explosive compounds with traditional processes of fluorescence and fluorescence quenching. Indirect detection methods include quenching of solution-phase, immobilized, and solid-state fluorophores, displacement of fluorophores, fluorescence immunoassay, and reactions that produce fluorescent products other than the explosive. A comprehensive review of these methods is presented.

Journal ArticleDOI
TL;DR: An overview of the current research on microarrays is given with the focus on automated systems and quantitative multiplexed applications.
Abstract: Microarrays provide a powerful analytical tool for the simultaneous detection of multiple analytes in a single experiment. The specific affinity reaction of nucleic acids (hybridization) and antibodies towards antigens is the most common bioanalytical method for generating multiplexed quantitative results. Nucleic acid-based analysis is restricted to the detection of cells and viruses. Antibodies are more universal biomolecular receptors that selectively bind small molecules such as pesticides, small toxins, and pharmaceuticals and to biopolymers (e.g. toxins, allergens) and complex biological structures like bacterial cells and viruses. By producing an appropriate antibody, the corresponding antigenic analyte can be detected on a multiplexed immunoanalytical microarray. Food and water analysis along with clinical diagnostics constitute potential application fields for multiplexed analysis. Diverse fluorescence, chemiluminescence, electrochemical, and label-free microarray readout systems have been developed in the last decade. Some of them are constructed as flow-through microarrays by combination with a fluidic system. Microarrays have the potential to become widely accepted as a system for analytical applications, provided that robust and validated results on fully automated platforms are successfully generated. This review gives an overview of the current research on microarrays with the focus on automated systems and quantitative multiplexed applications.

Journal ArticleDOI
TL;DR: Results show that the small differences in the solvent properties of the phosphonium ILs compared with ammonium-based ILs will allow for different and unique separation selectivities, and the phosphorus-based stationary phases tend to be more thermally stable than nitrogen- based ILs, which is an advantage in many GC applications.
Abstract: In recent years, room temperature ionic liquids (RTILs) have proven to be of great interest to analytical chemists. One important development is the use of RTILs as highly thermally stable GLC stationary phases. To date, nearly all of the RTIL stationary phases have been nitrogen-based (ammonium, pyrrolidinium, imidazolium, etc.). In this work, eight new monocationic and three new dicationic phosphonium-based RTILs are used as gas-liquid chromatography (GLC) stationary phases. Inverse gas chromatography (GC) analyses are used to study the solvation properties of the phosphonium RTILs through a linear solvation energy model. This model describes the multiple solvation interactions that the phosphonium RTILs can undergo and is useful in understanding their properties. In addition, the phosphonium-based stationary phases are used to separate complex analyte mixtures by GLC. Results show that the small differences in the solvent properties of the phosphonium ILs compared with ammonium-based ILs will allow for different and unique separation selectivities. Also, the phosphonium-based stationary phases tend to be more thermally stable than nitrogen-based ILs, which is an advantage in many GC applications.