scispace - formally typeset
Search or ask a question

Showing papers in "Angewandte Chemie in 2008"


Journal ArticleDOI
TL;DR: Some of the recent scientific advances in nanomaterials, and especially in nanostructured materials, for rechargeable lithium-ion batteries are reviewed.
Abstract: Energy storage is more important today than at any time in human history. Future generations of rechargeable lithium batteries are required to power portable electronic devices (cellphones, laptop computers etc.), store electricity from renewable sources, and as a vital component in new hybrid electric vehicles. To achieve the increase in energy and power density essential to meet the future challenges of energy storage, new materials chemistry, and especially new nanomaterials chemistry, is essential. We must find ways of synthesizing new nanomaterials with new properties or combinations of properties, for use as electrodes and electrolytes in lithium batteries. Herein we review some of the recent scientific advances in nanomaterials, and especially in nanostructured materials, for rechargeable lithium-ion batteries.

5,441 citations


Journal ArticleDOI
TL;DR: Polymer-based organic photovoltaic systems hold the promise for a cost-effective, lightweight solar energy conversion platform, which could benefit from simple solution processing of the active layer.
Abstract: Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer-based organic photovoltaic systems hold the promise for a cost-effective, lightweight solar energy conversion platform, which could benefit from simple solution processing of the active layer. The function of such excitonic solar cells is based on photoinduced electron transfer from a donor to an acceptor. Fullerenes have become the ubiquitous acceptors because of their high electron affinity and ability to transport charge effectively. The most effective solar cells have been made from bicontinuous polymer–fullerene composites, or so-called bulk heterojunctions. The best solar cells currently achieve an efficiency of about 5 %, thus significant advances in the fundamental understanding of the complex interplay between the active layer morphology and electronic properties are required if this technology is to find viable application.

3,911 citations


Journal ArticleDOI
TL;DR: The Bodipy family, first developed as luminescent tags and laser dyes, has become a cornerstone for these new applications and the near future looks extremely bright for "porphyrin's little sister".
Abstract: The world of organic luminophores has been confined for a long time to fairly standard biological labeling applications and to certain analytical tests. Recently, however, the field has undergone a major change of direction, driven by the dual needs to develop novel organic electronic materials and to fuel the rapidly emerging nanotechnologies. Among the many diverse fluorescent molecules, the Bodipy family, first developed as luminescent tags and laser dyes, has become a cornerstone for these new applications. The near future looks extremely bright for "porphyrin's little sister".

2,705 citations


Journal ArticleDOI
TL;DR: New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclized isocyanides have been developed recently.
Abstract: The chemistry of heterocyclic carbenes has experienced a rapid development over the last years. In addition to the imidazolin-2-ylidenes, a large number of cyclic diaminocarbenes with different ring sizes have been described. Aside from diaminocarbenes, P-heterocyclic carbenes, and derivatives with only one, or even no heteroatom within the carbene ring are known. New methods for the synthesis of complexes with N-heterocyclic carbene ligands such as the oxidative addition or the metal atom template controlled cyclization of β-functionalized isocyanides have been developed recently. This review summarizes the new developments regarding the synthesis of N-heterocyclic carbenes and their metal complexes.

2,454 citations



Journal ArticleDOI
TL;DR: This paper presents a probabilistic analysis of the response of the immune system to natural disasters to the presence of carbon dioxide in the air and shows clear patterns of decline over time.
Abstract: [Wang, Da-Wei; Li, Feng; Liu, Min; Cheng, Hui-Ming] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China. [Lu, Gao Qing] Univ Queensland, AIBN, Australia Res Council Ctr Funct Nanomat, Brisbane, Qld 4072, Australia. [Lu, Gao Qing] Univ Queensland, Sch Engn, Brisbane, Qld 4072, Australia.;Cheng, HM (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, 72 Wenhua Rd, Shenyang 110016, Peoples R China;cheng@imr.ac.cn

1,935 citations


Journal ArticleDOI
TL;DR: New approaches to add functionality were developed to improve the processability of these materials in solution, allowing the synthesis of acenes larger than pentacene, which have hitherto been largely unavailable and poorly studied.
Abstract: Acenes have long been the subject of intense study because of the unique electronic properties associated with their pi-bond topology. Recent reports of impressive semiconductor properties of larger homologues have reinvigorated research in this field, leading to new methods for their synthesis, functionalization, and purification, as well as for fabricating organic electronic components. Studies performed on high-purity acene single crystals revealed their intrinsic electronic properties and provide useful benchmarks for thin film device research. New approaches to add functionality were developed to improve the processability of these materials in solution. These new functionalization strategies have recently allowed the synthesis of acenes larger than pentacene, which have hitherto been largely unavailable and poorly studied, as well as investigation of their associated structure/property relationships.

1,741 citations


Journal ArticleDOI
TL;DR: The application ofadium-catalyzed amination reactions of aryl halides in C-N cross-coupling reactions in the synthesis of heterocycles and pharmaceuticals, in materials science, and in natural product synthesis is discussed.
Abstract: Palladium-catalyzed amination reactions of aryl halides have undergone rapid development in the last 12 years, largely driven by the implementation of new classes of ligands. Biaryl phosphanes have proven to provide especially active catalysts in this context. This Review discusses the application of these catalysts in C-N cross-coupling reactions in the synthesis of heterocycles and pharmaceuticals, in materials science, and in natural product synthesis.

1,722 citations


Journal ArticleDOI
TL;DR: Methods for the preparation of mesoporous carbon materials with extremely high surface areas and ordered mesostructures, with potential applications as catalysts, separation media, and advanced electronic materials in many scientific disciplines are developed.
Abstract: Porous carbon materials are of interest in many applications because of their high surface area and physicochemical properties. Conventional syntheses can only produce randomly porous materials, with little control over the pore-size distributions, let alone mesostructures. Recent breakthroughs in the preparation of other porous materials have resulted in the development of methods for the preparation of mesoporous carbon materials with extremely high surface areas and ordered mesostructures, with potential applications as catalysts, separation media, and advanced electronic materials in many scientific disciplines. Current syntheses can be categorized as either hard-template or soft-template methods. Both are examined in this Review along with procedures for surface functionalization of the carbon materials obtained.

1,716 citations



Journal ArticleDOI
TL;DR: Very highly porous materials, such as zeolites, carbon materials, polymers, and metal-organic frameworks, offer a wide variety of chemical composition and structural architectures that are suitable for the adsorption and storage of many different gases, including hydrogen, methane, nitric oxide, and carbon dioxide.
Abstract: Gas storage in solids is becoming an ever more important technology, with applications and potential applications ranging from energy and the environment all the way to biology and medicine. Very highly porous materials, such as zeolites, carbon materials, polymers, and metal-organic frameworks, offer a wide variety of chemical composition and structural architectures that are suitable for the adsorption and storage of many different gases, including hydrogen, methane, nitric oxide, and carbon dioxide. However, the challenges associated with designing materials to have sufficient adsorption capacity, controllable delivery rates, suitable lifetimes, and recharging characteristics are not trivial in many instances. The different chemistry associated with the various gases of interest makes it necessary to carefully match the properties of the porous material to the required application.

Journal ArticleDOI
TL;DR: The current knowledge about the molecular foundations of IL behavior is discussed and many controversies, speculations, and even myths about the properties that ILs allegedly possess are discussed.
Abstract: Ionic liquids (ILs) are organic salts with melting points near room temperature (or by convention below 100 degrees C). Recently, their unique materials and solvent properties and the growing interest in a sustainable, "green" chemistry has led to an amazing increase in interest in such salts. A huge number of potential cation and anion families and their many substitution patterns allows the desired properties for specific applications to be selected. Because it is impossible to experimentally investigate even a small fraction of the potential cation-anion combinations, a molecular-based understanding of their properties is crucial. However, the unusual complexity of their intermolecular interactions renders molecular-based interpretations difficult, and gives rise to many controversies, speculations, and even myths about the properties that ILs allegedly possess. Herein the current knowledge about the molecular foundations of IL behavior is discussed.

Journal ArticleDOI
TL;DR: In this article, the energy and geometrical features of the interaction are described along with the atomic characteristics that confer molecules with the specific ability to interact through this interaction, and some principles are presented for crystal engineering based on halogen-bonding interactions.
Abstract: Halogen bonding is the noncovalent interaction where halogen atoms function as electrophilic species. The energetic and geometrical features of the interaction are described along with the atomic characteristics that confer molecules with the specific ability to interact through this interaction. Halogen bonding has an impact on all research fields where the control of intermolecular recognition and self-assembly processes plays a key role. Some principles are presented for crystal engineering based on halogen-bonding interactions. The potential of the interaction is also shown by applications in liquid crystals, magnetic and conducting materials, and biological systems.

Journal ArticleDOI
TL;DR: It is shown that such a photocatalyst can be obtained from silver chloride by exploiting its photosensitivity, and the resulting plasmonic photoc atalyst is highly efficient and stable under visible-light illumination.
Abstract: Nanoparticles (NPs) of noble metals can strongly absorb visible light because of their plasmon resonance, which is greatly influenced by their morphology and size. The phenomenon of plasmon resonance gives rise to important applications such as colorimetric sensors, photovoltaic devices, photochromic devices, and photocatalysts. Noble metal NPs exhibit characteristic optical and physical properties that are substantially different from those of the corresponding bulk materials. In particular, silver NPs show efficient plasmon resonance in the visible region, which Awazu et al. recently utilized to develop a plasmonic photocatalyst. In their study, TiO2 was deposited on NPs consisting of a silver core covered with a silica (SiO2) shell to prevent oxidation of Ag by direct contact with TiO2. Under UV illumination, this plasmonic photocatalyst exhibits enhanced catalytic activity, which increases with decreasing thickness of the SiO2 shell. To enhance the activity of a plasmonic photocatalyst, it is desirable to deposit silver NPs directly onto the surface of an active dielectric substrate without a protective shell, because the near-field effect of the NPs will be more strongly felt by the substrate. Herein we show that such a photocatalyst can be obtained from silver chloride by exploiting its photosensitivity, and the resulting plasmonic photocatalyst is highly efficient and stable under visible-light illumination. Silver halides are photosensitive materials extensively used as source materials in photographic films. On absorbing a photon, a silver halide particle generates an electron and a hole, and subsequently the photogenerated electron combines with an Ag ion to form an Ag atom. Ultimately, a cluster of silver atoms is formed within a silver halide particle upon repeated absorption of photons. Due to this instability under sunlight, which provides the very basis for chemical photography, silver halides are seldom used as photocatalysts. Nevertheless, there have been reports that under UV/Vis illumination AgCl deposited on a conducting support photocatalyzes O2 production from water in the presence of a small excess of silver ions in solution, and that under UV illumination AgBr dispersed on a silica support photocatalyzes H2 production from CH3OH/H2O solution. [21] In their study on the AgBr/SiO2 photocatalyst, Kakuta et al. [21] observed that Ag species are formed on AgBr in the early stage of the reaction, and AgBr is not destroyed under successive UV illumination. As suggested by Kakuta et al., electron–hole separation may occur smoothly in the presence of Ag species, and the latter may catalyze H2 production from alcohol radicals formed by photo-induced holes. If so, silver NPs formed on silver halide particles might be expected to be a stable photocatalyst under visible-light illumination due to their plasmon resonance. This expectation led us to prepare a new photocatalyst active and stable under visible light, namely, AgCl particles with silver NPs formed on their surface, by first treating Ag2MoO4 with HCl to form AgCl powder and then reducing some Ag ions in the surface region of the AgCl particles to Ag species (for details, see the Experimental Section). For convenience, these are referred to as Ag@AgCl particles. The X-ray diffraction (XRD) pattern of the Ag@AgCl product clearly shows that the cubic phase of Ag with lattice constant a= 4.0861 A (JCPDS file: 65-2871) coexists with the cubic phase of AgCl with lattice constant a= 5.5491 A (JCPDS file: 31-1238; see Figure 1). Scanning electron microscopy (SEM) images of the Ag@AgCl product (Figure 2) reveal that silver NPs with diameters in the range of 20–150 nm are deposited on the surface of AgCl particles with diameters in the range of 0.2–1.3 mm. The UV/Vis diffuse-reflectance spectra of Ag@AgCl, AgCl, and N-doped TiO2 (used as reference photocatalyst) are compared in Figure 3. In contrast to AgCl and N-doped TiO2, Ag@AgCl has a strong adsorption in the visible region which is almost as strong as that in the UV region. This is attributed to the plasmon resonance of silver NPs deposited on AgCl particles. To evaluate the photooxidation capability of Ag@AgCl, we examined the decomposition of methylic orange (MO) dye in solution over the Ag@AgCl sample under visible-light irradiation as a function of time (Figure 4). For comparison, we also carried out decomposition of the MO dye in solution over the N-doped TiO2 reference photocatalyst under visible[*] P. Wang, Prof. Dr. B. Huang, X. Qin, Prof. X. Zhang, Dr. J. Wei State Key Lab of Crystal Materials Shandong University, Jinan 250100 (China) E-mail: bbhuang@sdu.edu.cn Homepage: http://www.icm.sdu.edu.cn/index.php

Journal ArticleDOI
TL;DR: This work presents discrete, monodisperse, and precisely sizecontrollable core–shell mesoporous silica NPs smaller than 100 nm by using single Fe3O4 nanocrystals as cores (designated as Fe3 O4@mSiO2) and demonstrates the multifunctional bioapplications of the core-shell NPs for simultaneous magnetic resonance and fluorescence imaging, and for drug delivery.
Abstract: During the past two decades, extensive research has been carried out on the biomedical applications of nanostructured materials. Among these various nanomaterials, mesoporous silica materials have been intensively investigated for their potential application as delivery vehicles for small-molecule drugs, DNA, and proteins, owing to their uniform pore size, large surface area, and high accessible pore volume. However, to date, there are only a few reports on the in vivo application of mesoporous silica materials administrated by intravenous injection, because it is difficult to synthesize discrete and monodisperse mesoporous silica particles smaller than around 100 nm that possess high colloidal stability in a physiological environment and small enough size to allow a long blood circulation. In general, bigger nanoparticles (NPs) result in more rapid uptake by the reticuloendothelial system (RES), such as liver and spleen, but smaller NPs can escape from phagocytes in RES and circulate through blood vessels with a long blood half-life. Although there have been several reports on the synthesis of uniform mesoporous silica particles smaller than 200 nm observed in TEM, the particles are not discrete but aggregated. Consequently, it is still a challenge to synthesize discrete, monodisperse, and size-controllable mesoporous silica NPs for in vivo applications. Recently, multifunctional nanostructured materials have been applied to multimodal imaging and simultaneous diagnosis and therapy. In this context, the integration of mesoporous silica with superparamagnetic monodisperse nanocrystals to form uniform core–shell composite particles has great potential for simultaneous bioimaging and drug delivery. Although there have been several reports on composite materials of magnetic nanocrystals and mesoporous silica materials, these materials have not been used for in vivo applications because of their size and aggregation. Herein, we present discrete, monodisperse, and precisely sizecontrollable core–shell mesoporous silica NPs smaller than 100 nm by using single Fe3O4 nanocrystals as cores (designated as Fe3O4@mSiO2). We also demonstrate the multifunctional bioapplications of the core–shell NPs for simultaneous magnetic resonance (MR) and fluorescence imaging, and for drug delivery. The synthetic protocol is represented in Scheme 1. Cetyltrimethylammonium bromide (CTAB) serves not only as the stabilizing surfactant for the transfer of hydrophobic Fe3O4 nanocrystals [10] to the aqueous phase but also as the organic template for the formation of mesopores in the sol– gel reaction. After removing the CTAB templates from the as-synthesized materials by heating them at reflux in acidic ethanol solution (pH 1.4), we collected the Fe3O4@mSiO2 particles. When we decreased the pH value of the extraction solution below 1.0, Fe3O4 nanocrystals as well as CTAB were fully removed from the as-synthesized Fe3O4@mSiO2, resulting in hollow mesoporous silica NPs (designated as H-mSiO2). Finally, for biomedical applications, the surface of the NPs was modified with PEG to render them biocompatible by



Journal ArticleDOI
TL;DR: Metal-catalyzed enantioselective allylation, which involves the substitution of allylic metal intermediates with a diverse range of different nucleophiles or S(N)2'-type allylic substitution, leads to the formation of C-H, -C, -O, -N, -S, and other bonds with very high levels of asymmetric induction.
Abstract: Metal-catalyzed enantioselective allylation, which involves the substitution of allylic metal intermediates with a diverse range of different nucleophiles or S(N)2'-type allylic substitution, leads to the formation of C-H, -C, -O, -N, -S, and other bonds with very high levels of asymmetric induction. The reaction may tolerate a broad range of functional groups and has been applied successfully to the synthesis of many natural products and new chiral compounds.

Journal ArticleDOI
TL;DR: It is likely that nanofabrication will underpin many technologies in the 21st century and the combination of supramolecular chemistry, materials science, and biomedicine allows application-based materials to be developed.
Abstract: It is likely that nanofabrication will underpin many technologies in the 21st century. Synthetic chemistry is a powerful approach to generate molecular structures that are capable of assembling into functional nanoscale architectures. There has been intense interest in self-assembling low-molecular-weight gelators, which has led to a general understanding of gelation based on the self-assembly of molecular-scale building blocks in terms of non-covalent interactions and packing parameters. The gelator molecules generate hierarchical, supramolecular structures that are macroscopically expressed in gel formation. Molecular modification can therefore control nanoscale assembly, a process that ultimately endows specific material function. The combination of supramolecular chemistry, materials science, and biomedicine allows application-based materials to be developed. Regenerative medicine and tissue engineering using molecular gels as nanostructured scaffolds for the regrowth of nerve cells has been demonstrated in vivo, and the prospect of using self-assembled fibers as one-dimensional conductors in gel materials has captured much interest in the field of nanoelectronics.

Journal ArticleDOI
TL;DR: This Review deals with selected studies reported in 2006 and the first half of 2007, and is intended to highlight four main aspects that may be taken as testimony of the present status and prospective of organocatalysis.
Abstract: After an initial period of validating asymmetric organocatalysis by using a wide range of important model reactions that constitute the essential tools of organic synthesis, the time has now been reached when organocatalysis can be used to address specific issues and solve pending problems of stereochemical relevance. This Review deals with selected studies reported in 2006 and the first half of 2007, and is intended to highlight four main aspects that may be taken as testimony of the present status and prospective of organocatalysis: a) chemical efficiency; b) discovery of new substrate combinations to give new asymmetric syntheses; c) development of new catalysts for specific purposes by using mechanistic findings; and d) applications of organocatalytic reactions in the asymmetric total synthesis of target natural products and known compounds of biological and pharmaceutical relevance.

Journal ArticleDOI
TL;DR: This Review describes this "Asymmetric Aminocatalysis Gold Rush" and charts the milestones in its development.
Abstract: Catalysis with chiral secondary amines (asymmetric aminocatalysis) has become a well-established and powerful synthetic tool for the chemo- and enantioselective functionalization of carbonyl compounds. In the last eight years alone, this field has grown at such an extraordinary pace that it is now recognized as an independent area of synthetic chemistry, where the goal is the preparation of any chiral molecule in an efficient, rapid, and stereoselective manner. This has been made possible by the impressive level of scientific competition and high quality research generated in this area. This Review describes this "Asymmetric Aminocatalysis Gold Rush" and charts the milestones in its development. As in all areas of science, progress depends on human effort.

Journal ArticleDOI
TL;DR: The synthetic approaches employed thus far for producing frameworks with exposed metal sites are reviewed, the hydrogen uptake capacities and binding energies in these materials are summarized, and results from experiments used to probe independently the metal-hydrogen interaction in selected materials will be discussed.
Abstract: Owing to their high uptake capacity at low temperature and excellent reversibility kinetics, metal–organic frameworks have attracted considerable attention as potential solid-state hydrogen storage materials. In the last few years, researchers have also identified several strategies for increasing the affinity of these materials towards hydrogen, among which the binding of H2 to unsaturated metal centers is one of the most promising. Herein, we review the synthetic approaches employed thus far for producing frameworks with exposed metal sites, and summarize the hydrogen uptake capacities and binding energies in these materials. In addition, results from experiments that were used to probe independently the metal–hydrogen interaction in selected materials will be discussed.

Journal ArticleDOI
TL;DR: Micro- or nanocrystalline materials have the general advantage of somewhat higher charge-carrier mobilities, which, however, could be offset in the case of amorphous, glassy materials by simpler and more reproducible processing.
Abstract: The cost-effective production of flexible electronic components will profit considerably from the development of solution-processable, organic semiconductor materials. Particular attention is focused on soluble semiconductors for organic field-effect transistors (OFETs). The hitherto differentiation between "small molecules" and polymeric materials no longer plays a role, rather more the ability to process materials from solution to homogeneous semiconducting films with optimal electronic properties (high charge-carrier mobility, low threshold voltage, high on/off ratio) is pivotal. Key classes of materials for this purpose are soluble oligoacenes, soluble oligo- and polythiophenes and their respective copolymers, and oligo- and polytriarylamines. In this context, micro- or nanocrystalline materials have the general advantage of somewhat higher charge-carrier mobilities, which, however, could be offset in the case of amorphous, glassy materials by simpler and more reproducible processing.

Journal ArticleDOI
TL;DR: It has become increasingly apparent that the behavior of Lewis bases as agents for promoting chemical reactions is not merely as an electronic complement of the cognate Lewis acids: in fact Lewis bases are capable of enhancing both the electrophilic and nucleophilic character of molecules to which they are bound.
Abstract: The legacy of Gilbert Newton Lewis (1875-1946) pervades the lexicon of chemical bonding and reactivity. The power of his concept of donor-acceptor bonding is evident in the eponymous foundations of electron-pair acceptors (Lewis acids) and donors (Lewis bases). Lewis recognized that acids are not restricted to those substances that contain hydrogen (Bronsted acids), and helped overthrow the "modern cult of the proton". His discovery ushered in the use of Lewis acids as reagents and catalysts for organic reactions. However, in recent years, the recognition that Lewis bases can also serve in this capacity has grown enormously. Most importantly, it has become increasingly apparent that the behavior of Lewis bases as agents for promoting chemical reactions is not merely as an electronic complement of the cognate Lewis acids: in fact Lewis bases are capable of enhancing both the electrophilic and nucleophilic character of molecules to which they are bound. This diversity of behavior leads to a remarkable versatility for the catalysis of reactions by Lewis bases.



Journal ArticleDOI
TL;DR: In this paper, the authors proposed the use of silicon as an anode material for lithium-ion batteries, which has the highest theoretical capacity (Li4.4Sio4200 mAhg) of all known materials.
Abstract: Rechargeable lithium-ion batteries are essential to portable electronic devices. Owing to the rapid development of such equipment there is an increasing demand for lithium-ion batteries with high energy density and long cycle life. For high energy density, the electrode materials in the lithium-ion batteries must possess high specific storage capacity and coulombic efficiency. Graphite and LiCoO2 are normally used and have high coulombic efficiencies (typically >90%) but rather low capacities (372 and 145 mAhg, respectively).[1–5] Various anode materials with improved storage capacity and thermal stability have been proposed for lithium-ion batteries in the last decade. Among these, silicon has attracted great interest as a candidate to replace commercial graphite materials owing to its numerous appealing features: it has the highest theoretical capacity (Li4.4Sio4200 mAhg) of all known materials, and is abundant, inexpensive, and safer than graphite (it shows a slightly higher voltage plateau than that of graphite as shown in Figure S1, and lithiated silicon is more stable in typical electrolytes than lithiated graphite[6]).

Journal ArticleDOI
TL;DR: This review provides an overview of interesting catalytic transformations of carboxylic acids and a number of derivatives accessible from them in situ to provide an invitation to complement, refine, and use these new methods in organic synthesis.
Abstract: In organic molecules carboxylic acid groups are among the most common functionalities Activated derivatives of carboxylic acids have long served as versatile connection points in derivatizations and in the construction of carbon frameworks In more recent years numerous catalytic transformations have been discovered which have made it possible for carboxylic acids to be used as building blocks without the need for additional activation steps A large number of different product classes have become accessible from this single functionality along multifaceted reaction pathways The frontispiece illustrates an important reason for this: In the catalytic cycles carbon monoxide gas can be released from acyl metal complexes, and gaseous carbon dioxide from carboxylate complexes, with different organometallic species being formed in each case Thus, carboxylic acids can be used as synthetic equivalents of acyl, aryl, or alkyl halides, as well as organometallic reagents This review provides an overview of interesting catalytic transformations of carboxylic acids and a number of derivatives accessible from them in situ It serves to provide an invitation to complement, refine, and use these new methods in organic synthesis

Journal ArticleDOI
TL;DR: New sophisticated motions of LCEs and their composite materials are demonstrated, including a first lightdriven plastic motor with laminated films composed of an LCE film and a flexible polyethylene (PE) sheet, leading to a reversible deformation of L CEs containing azobenzene chromophores just by changing the wavelength of actinic light.
Abstract: As light is a good energy source that can be controlled remotely, instantly, and precisely, light-driven soft actuators could play an important role for novel applications in wideranging industrial and medical fields. Liquid-crystalline elastomers (LCEs) are unique materials having both properties of liquid crystals (LCs) and elastomers, and a large deformation can be generated in LCEs, such as reversible contraction and expansion, and even bending, by incorporating photochromic molecules, such as an azobenzene, with the aid of photochemical reactions of these chromophores. Herein we demonstrate new sophisticated motions of LCEs and their composite materials: a plastic motor driven only by light. If materials absorb light and change their shape or volume, they can convert light energy directly into mechanical work (the photomechanical effect) and could be very efficient as a single-step energy conversion. Furthermore, these photomobile materials would be widely applicable because they can be controlled remotely just by manipulating the irradiation conditions. LCEs show an anisotropic order of mesogens with a cooperative effect, which leads them to undergo an anisotropic contraction along the alignment direction of mesogens when heated above their LC-isotropic(I) phase transition temperatures (TLC-I) and an expansion by lowering the temperature below TLC-I. [1, 13–18] The expansion and contraction is due to the microscopic change in alignment of mesogens, followed by the significant macroscopic change in order through the cooperative movement of mesogens and polymer segments. It is well known that when azobenzene derivatives are incorporated into LCs, the LC-I phase transition can be induced isothermally by irradiation with UV light to cause trans–cis photoisomerization, and the I-LC reverse-phase transition by irradiation with visible light to cause cis–trans back-isomerization. This photoinduced phase transition (or photoinduced reduction of LC order) has led successfully to a reversible deformation of LCEs containing azobenzene chromophores just by changing the wavelength of actinic light. Although the photoinduced deformation of LCEs previously reported is large and interesting, it is limited to contraction/expansion and bending, preventing them from being used for actual applications. Herein we report potentially applicable rotational motions of azobenzene-containing LCEs and their composite materials, including a first lightdriven plastic motor with laminated films composed of an LCE film and a flexible polyethylene (PE) sheet. The LCE films were prepared by photopolymerization of a mixture of an LC monomer containing an azobenzene moiety (molecule 1 shown in Scheme 1) and an LC diacrylate with an azobenzene moiety (2 in Scheme 1) with a ratio of 20/ 80 mol/mol, containing 2 mol% of a photoinitiator in a glass cell coated with rubbed polyimide alignment layers. The photopolymerization was conducted at a temperature at which the mixture exhibited a smectic phase. The glasstransition temperature of the LCE films is at about room temperature, allowing the LCE films to work at room temperature in air, as the films are flexible enough at this temperature. We prepared a continuous ring of the LCE film by connecting both ends of the film. The azobenzene mesogens were aligned along the circular direction of the ring. Upon exposure to UV light from the downside right and visible light from the upside right simultaneously (Figure 1), the ring

Journal ArticleDOI
TL;DR: A-MnO2 nanowires give the highest charge storage capacity yet reported for such an electrode, reaching 3000 mAh per gram of carbon, or 505 mAhg 1 if normalized by the total electrode mass, and is compared with other manganese oxide compounds.
Abstract: Charge storage in rechargeable lithium batteries is limited by the positive electrode, usually the lithium intercalation compound LiCoO2, which can store 130 mAhg . Intense efforts are underway worldwide to discover new lithium intercalation compounds for use as positive electrodes which, it is hoped, may deliver specific capacities of about 300 mAhg . However, increasing the capacity significantly beyond this limit is a major challenge requiring a more radical approach, such as replacement of the intercalation electrode by an O2 electrode, in which Li + from the electrolyte and e from the external circuit combine reversibly with O2 from the air within a porous matrix containing a catalyst. Although it provides higher capacities than intercalation electrodes, much fundamental work is required to understand and optimize the performance of the O2 electrode for lithium batteries before it can be considered further for technological application. The nature of the catalyst plays a key role. It is important to identify good catalysts for the electrode reaction before focusing on other tasks, such as reducing the catalyst loading and optimizing porosity, binder, and electrolyte. Herein we show that a-MnO2 nanowires give the highest charge storage capacity yet reported for such an electrode, reaching 3000 mAh per gram of carbon, or 505 mAhg 1 if normalized by the total electrode mass. Furthermore, by avoiding deep discharge, excellent capacity retention has been demonstrated. Finally, the capacities delivered by an O2 electrode and a conventional intercalation compound are compared. The reversible oxygen electrode is shown schematically in Figure 1. On discharge, the Li ions (electrolyte) and e (external circuit) combine with O2 (air) to form Li2O2 within the pores of the porous carbon electrode. Previously, we demonstrated that rechargeability of the Li/O2 cell involves decomposition of Li2O2 back to Li and O2. [8] Our earlier studies on the rechargeable Li/O2 cell focused on electrolytic manganese dioxide (EMD) as catalyst in the oxygen electrode. Recently, we examined a number of other potential catalyst materials including Co3O4, Fe2O3, CuO, and CoFe2O4. [9] Such investigations served to demonstrate that the nature of the catalyst is a key factor controlling the performance of the oxygen electrode, especially the capacity, which is the primary reason for interest in the O2 electrode. Herein we report on the high capacities that an a-MnO2 nanowire catalyst can deliver. We also compare the performance of a-MnO2 with other manganese oxide compounds. Note that the specific capacities are normalized with respect to the mass of carbon in the electrode, as is usual for porous electrodes; this point is discussed at the end of the paper. Synthesis and characterization of the various MnOx catalysts and their incorporation into lithium cells with porous electrodes is described in the Experimental Section. Powder X-ray diffraction data were collected for all catalysts (see the Supporting Information) and confirmed their identities (a-MnO2 in bulk and nanowire form, b-MnO2 in bulk and nanowire form, g-MnO2, l-MnO2, Mn2O3, and Mn3O4). The variation of capacity with cycle number for a porous electrode containing a-MnO2 nanowires as catalyst is presented in Figure 2a, from which the superior behavior of the a-MnO2 catalyst is evident. The initial discharge capacity is 3000 mAhg , it then drops slightly, rises again to 3100 mAhg 1 on cycle 4, before declining steadily thereafter. This may be contrasted with previous reports for EMD, the capacity of which falls below 1000 mAhg 1 after one cycle (Figure 2a). The variation of potential with state of charge for several cycles of a-MnO2 is shown in Figure 2b. As observed previously for all other catalysts, the discharge voltage is around 2.6 V versus Li/Li. 9] Previous results have demonstrated that the charging potential varies according to the catalyst type. Values ranging from 4 to 4.7 V versus Li/Li have been observed, and a-MnO2 exhibits a charging potential at the lower end of this spectrum, at around 4.0 V. This is another advantage of the a-MnO2 nanowires, since it is important to minimize the charging potential. Note that a-MnO2, and many of the other MnOx compounds described herein, support some Li intercalation. However, Figure 1. Schematic representation of a rechargeable Li/O2 battery.