scispace - formally typeset
Search or ask a question

Showing papers in "Angewandte Chemie in 2015"


Journal ArticleDOI
TL;DR: The Review considers some of the current scientific issues underpinning sodium ion batteries, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods.
Abstract: Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries.

1,694 citations


Journal ArticleDOI
TL;DR: The facile preparation and unique optical features make these CDs potentially useful in numerous applications such as light-emitting diodes, full-color displays, and multiplexed (UC)PL bioimaging.
Abstract: A facile approach for preparation of photoluminescent (PL) carbon dots (CDs) is reported. The three resulting CDs emit bright and stable red, green and blue (RGB) colors of luminescence, under a single ultraviolet-light excitation. Alterations of PL emission of these CDs are tentatively proposed to result from the difference in their particle size and nitrogen content. Interestingly, up-conversion (UC)PL of these CDs is also observed. Moreover, flexible full-color emissive PVA films can be achieved through mixing two or three CDs in the appropriate ratios. These CDs also show low cytotoxicity and excellent cellular imaging capability. The facile preparation and unique optical features make these CDs potentially useful in numerous applications such as light-emitting diodes, full-color displays, and multiplexed (UC)PL bioimaging.

1,504 citations


Journal ArticleDOI
TL;DR: A critical appraisal of both theoretical and experimental studies of HER electrocatalysts with special emphasis on the electronic structure, surface (electro)chemistry, and molecular design addresses the importance of correlating theoretical calculations and electrochemical measurements toward better understanding of Her electrocatalysis at the atomic level.
Abstract: The electrocatalytic hydrogen-evolution reaction (HER), as the main step of water splitting and the cornerstone of exploring the mechanism of other multi-electron transfer electrochemical processes, is the subject of extensive studies. A large number of high-performance electrocatalysts have been developed for HER accompanied by recent significant advances in exploring its electrochemical nature. Herein we present a critical appraisal of both theoretical and experimental studies of HER electrocatalysts with special emphasis on the electronic structure, surface (electro)chemistry, and molecular design. It addresses the importance of correlating theoretical calculations and electrochemical measurements toward better understanding of HER electrocatalysis at the atomic level. Fundamental concepts in the computational quantum chemistry and its relation to experimental electrochemistry are also presented along with some featured examples.

1,492 citations


Journal ArticleDOI
TL;DR: The performance enhancement of Ni-rich cathode materials through structure tuning or interface engineering is summarized and the underlying mechanisms and remaining challenges will also be discussed.
Abstract: High energy-density lithium-ion batteries are in demand for portable electronic devices and electrical vehicles. Since the energy density of the batteries relies heavily on the cathode material used, major research efforts have been made to develop alternative cathode materials with a higher degree of lithium utilization and specific energy density. In particular, layered, Ni-rich, lithium transition-metal oxides can deliver higher capacity at lower cost than the conventional LiCoO2 . However, for these Ni-rich compounds there are still several problems associated with their cycle life, thermal stability, and safety. Herein the performance enhancement of Ni-rich cathode materials through structure tuning or interface engineering is summarized. The underlying mechanisms and remaining challenges will also be discussed.

1,388 citations


Journal ArticleDOI
TL;DR: Novel 2D mono-elemental semiconductors, namely monolayered arsenene and antimonene, with wide band gaps and high stability were now developed based on first-principles calculations, which could pave the way for transistors with high on/off ratios, optoelectronic devices working under blue or UV light, and mechanical sensors based on new 2D crystals.
Abstract: The typical two-dimensional (2D) semiconductors MoS2, MoSe2, WS2, WSe2 and black phosphorus have garnered tremendous interest for their unique electronic, optical, and chemical properties. However, all 2D semiconductors reported thus far feature band gaps that are smaller than 2.0 eV, which has greatly restricted their applications, especially in optoelectronic devices with photoresponse in the blue and UV range. Novel 2D mono-elemental semiconductors, namely monolayered arsenene and antimonene, with wide band gaps and high stability were now developed based on first-principles calculations. Interestingly, although As and Sb are typically semimetals in the bulk, they are transformed into indirect semiconductors with band gaps of 2.49 and 2.28 eV when thinned to one atomic layer. Significantly, under small biaxial strain, these materials were transformed from indirect into direct band-gap semiconductors. Such dramatic changes in the electronic structure could pave the way for transistors with high on/off ratios, optoelectronic devices working under blue or UV light, and mechanical sensors based on new 2D crystals.

1,376 citations


Journal ArticleDOI
Chun Tang1, Ningyan Cheng1, Zonghua Pu1, Wei Xing1, Xuping Sun1 
TL;DR: The growth of NiSe nanowire film on nickel foam (NiSe/NF) in situ by hydrothermal treatment of NF using NaHSe as Se source is presented.
Abstract: Active and stable electrocatalysts made from earth-abundant elements are key to water splitting for hydrogen production through electrolysis. The growth of NiSe nanowire film on nickel foam (NiSe/NF) insitu by hydrothermal treatment of NF using NaHSe as Se source is presented. When used as a 3D oxygen evolution electrode, the NiSe/NF exhibits high activity with an overpotential of 270mV required to achieve 20mAcm(-2) and strong durability in 1.0M KOH, and the NiOOH species formed at the NiSe surface serves as the actual catalytic site. The system is also highly efficient for catalyzing the hydrogen evolution reaction in basic media. This bifunctional electrode enables a high-performance alkaline water electrolyzer with 10mAcm(-2) at a cell voltage of 1.63V.

1,376 citations


Journal ArticleDOI
TL;DR: The current state of this young but rapidly expanding field is outlined in this Review and the future directions for its broadening sphere of impact are considered.
Abstract: Frustrated Lewis pairs (FLPs) are combinations of Lewis acids and Lewis bases in solution that are deterred from strong adduct formation by steric and/or electronic factors. This opens pathways to novel cooperative reactions with added substrates. Small-molecule binding and activation by FLPs has led to the discovery of a variety of new reactions through unprecedented pathways. Hydrogen activation and subsequent manipulation in metal-free catalytic hydrogenations is a frequently observed feature of many FLPs. The current state of this young but rapidly expanding field is outlined in this Review and the future directions for its broadening sphere of impact are considered.

1,249 citations


Journal ArticleDOI
TL;DR: A series of spinel-structured nanosheets with oxygen deficiencies and ultrathin thicknesses designed to increase the reactivity and the number of active sites of the catalysts were taken as an excellent platform for promoting the water oxidation process and should provide a new pathway for the design of advanced OER catalysts.
Abstract: Electrochemical water splitting is a clean technology for H2 fuels, but greatly hindered by the slow kinetics of the oxygen evolution reaction (OER). Herein, a series of spinel-structured nanosheets with oxygen deficiencies and ultrathin thicknesses were designed to increase the reactivity and the number of active sites of the catalysts, which were then taken as an excellent platform for promoting the water oxidation process. Theoretical investigations showed that the oxygen vacancies confined in the ultrathin nanosheet could lower the adsorption energy of H2O, leading to increased OER efficiency. As expected, the NiCo2O4 ultrathin nanosheets rich in oxygen vacancies exhibited a large current density of 285 mA cm−2 at 0.8 V and a small overpotential of 0.32 V, both of which are superior to the corresponding values of bulk samples or samples with few oxygen deficiencies and even higher than those of most reported non-precious-metal catalysts. This work should provide a new pathway for the design of advanced OER catalysts.

1,164 citations


Journal ArticleDOI
TL;DR: The methods to modify the electronic structure, nanostructure, crystal structure, and heterostructure of g-C3 N4, together with correlations between its structure and performance are illustrated.
Abstract: As a promising two-dimensional conjugated polymer, graphitic carbon nitride (g-C3 N4 ) has been utilized as a low-cost, robust, metal-free, and visible-light-active photocatalyst in the field of solar energy conversion. This Review mainly describes the latest advances in g-C3 N4 photocatalysts for water splitting. Their application in CO2 conversion, organosynthesis, and environmental purification is also briefly discussed. The methods to modify the electronic structure, nanostructure, crystal structure, and heterostructure of g-C3 N4 , together with correlations between its structure and performance are illustrated. Perspectives on the challenges and opportunities for the future exploration of g-C3 N4 photocatalysts are provided. This Review will promote the utilization of g-C3 N4 materials in the fields of photocatalysis, energy conversion, environmental remediation, and sensors.

1,154 citations


Journal ArticleDOI
TL;DR: It is reported that 2D early-transition-metal carbide conductive MXene phases-reported to be impressive supercapacitor materials-also perform as excellent sulfur battery hosts owing to their inherently high underlying metallic conductivity and self-functionalized surfaces.
Abstract: Lithium–sulfur batteries are amongst the most promising candidates to satisfy emerging energy-storage demands. Suppression of the polysulfide shuttle while maintaining high sulfur content is the main challenge that faces their practical development. Here, we report that 2D early-transition-metal carbide conductive MXene phases—reported to be impressive supercapacitor materials—also perform as excellent sulfur battery hosts owing to their inherently high underlying metallic conductivity and self-functionalized surfaces. We show that 70 wt % S/Ti2C composites exhibit stable long-term cycling performance because of strong interaction of the polysulfide species with the surface Ti atoms, demonstrated by X-ray photoelectron spectroscopy studies. The cathodes show excellent cycling performance with specific capacity close to 1200 mA h g−1 at a five-hour charge/discharge (C/5) current rate. Capacity retention of 80 % is achieved over 400 cycles at a two-hour charge/discharge (C/2) current rate.

1,064 citations


Journal ArticleDOI
TL;DR: This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals.
Abstract: In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals.

Journal ArticleDOI
TL;DR: This Review describes the principles of materials with selective oil/water absorption and outline recent advances in oil/ water separation with superwetting/superantiwetting materials, including their design, their fabrication, and models of experimental setups.
Abstract: The separation of oil from oily water is an important pursuit because of increasing worldwide oil pollution. Separation by the use of materials with selective oil/water absorption is a relatively recent area of development, yet highly promising. Owing to their selective superantiwetting/superwetting properties towards water and oil, superhydrophobic/superoleophilic surfaces and underwater superoleophobic surfaces have been developed for the separation of oil/water-free mixtures and emulsions. In this Review, after a short introduction to oil/water separation, we describe the principles of materials with selective oil/water absorption and outline recent advances in oil/water separation with superwetting/superantiwetting materials, including their design, their fabrication, and models of experimental setups. Finally, we discuss the current state of this new field and point out the remaining problems and future challenges.

Journal ArticleDOI
TL;DR: Density functional theory (DFT) calculations indicate that the ultrathin graphene shells strongly promote electron penetration from the CoNi nanoalloy to the graphene surface, which results in superior HER activity on the graphene shells.
Abstract: Major challenges encountered when trying to replace precious-metal-based electrocatalysts of the hydrogen evolution reaction (HER) in acidic media are related to the low efficiency and stability of non-precious-metal compounds. Therefore, new concepts and strategies have to be devised to develop electrocatalysts that are based on earth-abundant materials. Herein, we report a hierarchical architecture that consists of ultrathin graphene shells (only 1-3 layers) that encapsulate a uniform CoNi nanoalloy to enhance its HER performance in acidic media. The optimized catalyst exhibits high stability and activity with an onset overpotential of almost zero versus the reversible hydrogen electrode (RHE) and an overpotential of only 142 mV at 10 mAcm(-2), which is quite close to that of commercial 40% Pt/C catalysts. Density functional theory (DFT) calculations indicate that the ultrathin graphene shells strongly promote electron penetration from the CoNi nanoalloy to the graphene surface. With nitrogen dopants, they synergistically increase the electron density on the graphene surface, which results in superior HER activity on the graphene shells.

Journal ArticleDOI
TL;DR: This work highlights the advantages in both ensemble and single-nanocrystal PL of colloidal CsPbBr3 nanocrystals (NCs) over the traditional cQDs and investigates batch-to-batch reproducibility of NCs exhibiting PL peaks within ±1 nm.
Abstract: Traditional CdSe-based colloidal quantum dots (cQDs) have interesting photoluminescence (PL) properties. Herein we highlight the advantages in both ensemble and single-nanocrystal PL of colloidal CsPbBr3 nanocrystals (NCs) over the traditional cQDs. An ensemble of colloidal CsPbBr3 NCs (11 nm) exhibits ca. 90 % PL quantum yield with narrow (FWHM=86 meV) spectral width. Interestingly, the spectral width of a single-NC and an ensemble are almost identical, ruling out the problem of size-distribution in PL broadening. Eliminating this problem leads to a negligible influence of self-absorption and Forster resonance energy transfer, along with batch-to-batch reproducibility of NCs exhibiting PL peaks within ±1 nm. Also, PL peak positions do not alter with measurement temperature in the range of 25 to 100 °C. Importantly, CsPbBr3 NCs exhibit suppressed PL blinking with ca. 90 % of the individual NCs remain mostly emissive (on-time >85 %), without much influence of excitation power.

Journal ArticleDOI
TL;DR: NIR photoexcitation of the BPQDs in the presence of C6 and MCF7 cancer cells led to significant cell death, suggesting that the nanoparticles have large potential as photothermal agents.
Abstract: Black phosphorus quantum dots (BPQDs) were synthesized using a liquid exfoliation method that combined probe sonication and bath sonication. With a lateral size of approximately 2.6 nm and a thickness of about 1.5 nm, the ultrasmall BPQDs exhibited an excellent NIR photothermal performance with a large extinction coefficient of 14.8 L g(-1) cm(-1) at 808 nm, a photothermal conversion efficiency of 28.4%, as well as good photostability. After PEG conjugation, the BPQDs showed enhanced stability in physiological medium, and there was no observable toxicity to different types of cells. NIR photoexcitation of the BPQDs in the presence of C6 and MCF7 cancer cells led to significant cell death, suggesting that the nanoparticles have large potential as photothermal agents.

Journal ArticleDOI
TL;DR: This Review provides both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs.
Abstract: Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect-engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect-engineered CNCs.

Journal ArticleDOI
TL;DR: Examples of MLC in which both the metal and the ligand are chemically modified during bond activation and 2) Bond activation results in immediate changes in the 1st coordination sphere involving the cooperating ligand, even if the reactive center at the ligands is not directly bound to the metal.
Abstract: Metal-ligand cooperation (MLC) has become an important concept in catalysis by transition metal complexes both in synthetic and biological systems. MLC implies that both the metal and the ligand are directly involved in bond activation processes, by contrast to "classical" transition metal catalysis where the ligand (e.g. phosphine) acts as a spectator, while all key transformations occur at the metal center. In this Review, we will discuss examples of MLC in which 1) both the metal and the ligand are chemically modified during bond activation and 2) bond activation results in immediate changes in the 1st coordination sphere involving the cooperating ligand, even if the reactive center at the ligand is not directly bound to the metal (e.g. via tautomerization). The role of MLC in enabling effective catalysis as well as in catalyst deactivation reactions will be discussed.

Journal ArticleDOI
TL;DR: It is reported that nitrogen and sulfur co-doping leads to high catalytic activity of nanoporous graphene in HER at low operating potential, comparable to the best Pt-free HER catalyst, 2D MoS2 .
Abstract: Chemical doping has been demonstrated to be an effective way to realize new functions of graphene as metal-free catalyst in energy-related electrochemical reactions. Although efficient catalysis for the oxygen reduction reaction (ORR) has been achieved with doped graphene, its performance in the hydrogen evolution reaction (HER) is rather poor. In this study we report that nitrogen and sulfur co-doping leads to high catalytic activity of nanoporous graphene in HER at low operating potential, comparable to the best Pt-free HER catalyst, 2D MoS2 . The interplay between the chemical dopants and geometric lattice defects of the nanoporous graphene plays the fundamental role in the superior HER catalysis.

Journal ArticleDOI
TL;DR: A new physical and chemical entrapment strategy is based on a highly efficient sulfur host, namely hollow carbon nanofibers filled with MnO2 nanosheets, which efficiently prevents polysulfide dissolution in Lithium-sulfur batteries.
Abstract: Lithium–sulfur batteries have been investigated as promising electrochemical-energy storage systems owing to their high theoretical energy density. Sulfur-based cathodes must not only be highly conductive to enhance the utilization of sulfur, but also effectively confine polysulfides to mitigate their dissolution. A new physical and chemical entrapment strategy is based on a highly efficient sulfur host, namely hollow carbon nanofibers (HCFs) filled with MnO2 nanosheets. Benefiting from both the HCFs and birnessite-type MnO2 nanosheets, the MnO2@HCF hybrid host not only facilitates electron and ion transfer during the redox reactions, but also efficiently prevents polysulfide dissolution. With a high sulfur content of 71 wt % in the composite and an areal sulfur mass loading of 3.5 mg cm−2 in the electrode, the MnO2@HCF/S electrode delivered a specific capacity of 1161 mAh g−1 (4.1 mAh cm−2) at 0.05 C and maintained a stable cycling performance at 0.5 C over 300 cycles.

Journal ArticleDOI
TL;DR: This Review summarizes the major advances in the growing field of catalytic nanomotors, which started ten years ago.
Abstract: Chemically powered micro- and nanomotors are small devices that are self-propelled by catalytic reactions in fluids. Taking inspiration from biomotors, scientists are aiming to find the best architecture for self-propulsion, understand the mechanisms of motion, and develop accurate control over the motion. Remotely guided nanomotors can transport cargo to desired targets, drill into biomaterials, sense their environment, mix or pump fluids, and clean polluted water. This Review summarizes the major advances in the growing field of catalytic nanomotors, which started ten years ago.

Journal ArticleDOI
TL;DR: The present findings suggest that replacing the methylammonium component in CH3 NH3 PbI3 to a species without acid protons could improve tolerance to oxygen and enhance stability.
Abstract: In this paper we report on the influence of light and oxygen on the stability of CH3 NH3 PbI3 perovskite-based photoactive layers. When exposed to both light and dry air the mp-Al2 O3 /CH3 NH3 PbI3 photoactive layers rapidly decompose yielding methylamine, PbI2 , and I2 as products. We show that this degradation is initiated by the reaction of superoxide (O2 (-) ) with the methylammonium moiety of the perovskite absorber. Fluorescent molecular probe studies indicate that the O2 (-) species is generated by the reaction of photoexcited electrons in the perovskite and molecular oxygen. We show that the yield of O2 (-) generation is significantly reduced when the mp-Al2 O3 film is replaced with an mp-TiO2 electron extraction and transport layer. The present findings suggest that replacing the methylammonium component in CH3 NH3 PbI3 to a species without acid protons could improve tolerance to oxygen and enhance stability.

Journal ArticleDOI
TL;DR: It is reported that cobalt-phosphorous-derived films (Co-P) can act as bifunctional catalysts for overall water splitting with 100% Faradaic efficiency, rivalling the integrated performance of Pt and IrO2.
Abstract: One of the challenges to realize large-scale water splitting is the lack of active and low-cost electrocatalysts for its two half reactions: H2 and O2 evolution reactions (HER and OER). Herein, we report that cobalt-phosphorous-derived films (Co-P) can act as bifunctional catalysts for overall water splitting. The as-prepared Co-P films exhibited remarkable catalytic performance for both HER and OER in alkaline media, with a current density of 10 mA cm−2 at overpotentials of −94 mV for HER and 345 mV for OER and Tafel slopes of 42 and 47 mV/dec, respectively. They can be employed as catalysts on both anode and cathode for overall water splitting with 100 % Faradaic efficiency, rivalling the integrated performance of Pt and IrO2. The major composition of the as-prepared and post-HER films are metallic cobalt and cobalt phosphide, which partially evolved to cobalt oxide during OER.

Journal ArticleDOI
TL;DR: A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is reported to act as a sulfur host.
Abstract: Despite the high theoretical capacity of lithium–sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon-nanotube-interpenetrated mesoporous nitrogen-doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g−1 after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer-sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm−2) with a high sulfur loading of approximately 5 mg cm−2, which is ideal for practical applications of the lithium–sulfur batteries.

Journal ArticleDOI
TL;DR: The catalyst was applied for three-phase hydrogenations of alkynes and nitroarenes in a continuous-flow reactor, showing its high activity and product selectivity in comparison with benchmark catalysts based on nanoparticles.
Abstract: We report the preparation and hydrogenation performance of a single-site palladium catalyst that was obtained by the anchoring of Pd atoms into the cavities of mesoporous polymeric graphitic carbon nitride. The characterization of the material confirmed the atomic dispersion of the palladium phase throughout the sample. The catalyst was applied for three-phase hydrogenations of alkynes and nitroarenes in a continuous-flow reactor, showing its high activity and product selectivity in comparison with benchmark catalysts based on nanoparticles. Density functional theory calculations provided fundamental insights into the material structure and attributed the high catalyst activity and selectivity to the facile hydrogen activation and hydrocarbon adsorption on atomically dispersed Pd sites.

Journal ArticleDOI
TL;DR: This work develops a new generally applicable strategy toward the synthesis of mixed-metal-oxide complex hollow spheres, and demonstrates the concept by synthesizing highly uniform NiCo2O4 hollow spheres with a complex interior structure.
Abstract: Despite the significant advancement in preparing metal oxide hollow structures, most approaches rely on template-based multistep procedures for tailoring the interior structure. In this work, we develop a new generally applicable strategy toward the synthesis of mixed-metal-oxide complex hollow spheres. Starting with metal glycerate solid spheres, we show that subsequent thermal annealing in air leads to the formation of complex hollow spheres of the resulting metal oxide. We demonstrate the concept by synthesizing highly uniform NiCo2O4 hollow spheres with a complex interior structure. With the small primary building nanoparticles, high structural integrity, complex interior architectures, and enlarged surface area, these unique NiCo2O4 hollow spheres exhibit superior electrochemical performances as advanced electrode materials for both lithium-ion batteries and supercapacitors. This approach can be an efficient self-templated strategy for the preparation of mixed-metal-oxide hollow spheres with complex interior structures and functionalities.

Journal ArticleDOI
TL;DR: Flexible non-metal oxygen electrodes fabricated from phosphorus-doped graphitic carbon nitride nano-flowers directly grown on carbon-fiber paper exhibit high activity and stability in reversibly catalyzing oxygen reduction and evolution reactions, comparable to that of the state-of-the-art transition- metal, noble-metal, and non-Metal catalysts.
Abstract: Flexible non-metal oxygen electrodes fabricated from phosphorus-doped graphitic carbon nitride nano-flowers directly grown on carbon-fiber paper exhibit high activity and stability in reversibly catalyzing oxygen reduction and evolution reactions, which is a result of N, P dual action, enhanced mass/charge transfer, and high active surface area The performance is comparable to that of the state-of-the-art transition-metal, noble-metal, and non-metal catalysts Remarkably, the flexible nature of these oxygen electrodes allows their use in folded and rolled-up forms, and directly as cathodes in Zn–air batteries, featuring low charge/discharge overpotential and long lifetime

Journal ArticleDOI
TL;DR: The reported phase diagrams of poly(N-isopropylacrylamide) (PNIPAM) are surveyed, the differences and comment on theoretical ideas regarding their possible origins are discussed, and open questions in this reputably mature domain are alerted.
Abstract: In 1968, Heskins and Guillet published the first systematic study of the phase diagram of poly(N-isopropylacrylamide) (PNIPAM), at the time a “young polymer” first synthesized in 1956. Since then, PNIPAM became the leading member of the growing families of thermoresponsive polymers and of stimuli-responsive, “smart” polymers in general. Its thermal response is unanimously attributed to its phase behavior. Yet, in spite of 50 years of research, a coherent quantitative picture remains elusive. In this Review we survey the reported phase diagrams, discuss the differences and comment on theoretical ideas regarding their possible origins. We aim to alert the PNIPAM community to open questions in this reputably mature domain.

Journal ArticleDOI
TL;DR: Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs.
Abstract: The utility of metal–organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11-hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm−1 (pellet, two-point-probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub-ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs.

Journal ArticleDOI
TL;DR: The use of bio-based plastics, which are produced from renewable resources, and biodegradable plastics, will lead to a more sustainable society and help solve global environmental and waste management problems.
Abstract: Currently used plastics are mostly produced from petrochemical products, but there is a growing demand for eco-friendly plastics. The use of bio-based plastics, which are produced from renewable resources, and biodegradable plastics, which are degraded in the environment, will lead to a more sustainable society and help us solve global environmental and waste management problems.

Journal ArticleDOI
TL;DR: A one-step facile synthesis of a novel precious-metal-free hydrogen-evolution nanoelectrocatalyst that is composed of ultrasmall molybdenum carbide (Mo2 C) nanoparticles embedded within nitrogen-rich carbon (NC) nanolayers that shows remarkable catalytic activity, has great durability, and gives about 100 % Faradaic yield toward the hydrogen-Evolution reaction (HER) over a wide pH range.
Abstract: In our efforts to obtain electrocatalysts with improved activity for water splitting, meticulous design and synthesis of the active sites of the electrocatalysts and deciphering how exactly they catalyze the reaction are vitally necessary. Herein, we report a one-step facile synthesis of a novel precious-metal-free hydrogen-evolution nanoelectrocatalyst, dubbed Mo2C@NC that is composed of ultrasmall molybdenum carbide (Mo2C) nanoparticles embedded within nitrogen-rich carbon (NC) nanolayers. The Mo2C@NC hybrid nanoelectrocatalyst shows remarkable catalytic activity, has great durability, and gives about 100 % Faradaic yield toward the hydrogen-evolution reaction (HER) over a wide pH range (pH 0–14). Theoretical calculations show that the Mo2C and N dopants in the material synergistically co-activate adjacent C atoms on the carbon nanolayers, creating superactive nonmetallic catalytic sites for HER that are more active than those in the constituents.