scispace - formally typeset
Search or ask a question

Showing papers in "Angewandte Chemie in 2019"


Journal ArticleDOI
TL;DR: Various strategies based on the Fenton reaction have been employed to enhance hydroxyl radical generation, including nanomaterials selection, modulation of the reaction environment, and external energy fields stimulation, which are discussed systematically in this Minireview.
Abstract: Tailored to the specific tumour microenvironment, which involves acidity and the overproduction of hydrogen peroxide, advanced nanotechnology has been introduced to generate the hydroxyl radical ( OH) primarily for tumour chemodynamic therapy (CDT) through the Fenton and Fenton-like reactions Numerous studies have investigated the enhancement of CDT efficiency, primarily the increase in the amount of OH generated Notably, various strategies based on the Fenton reaction have been employed to enhance OH generation, including nanomaterials selection, modulation of the reaction environment, and external energy fields stimulation, which are discussed systematically in this Minireview Furthermore, the potential challenges and the methods used to facilitate CDT effectiveness are also presented to support this cutting-edge research area

1,190 citations


Journal ArticleDOI
TL;DR: It is shown that biodegradation tests carried out in artificial environments lack transferability to real conditions and, therefore, the necessity of environmentally authentic and relevant field-testing conditions is highlighted.
Abstract: In recent years the littering of plastics and the problems related to their persistence in the environment have become a major focus in both research and the news. Biodegradable polymers like poly(lactic acid) are seen as a suitable alternative to commodity plastics. However, poly(lactic acid) is basically non-degradable in seawater. Similarly, the degradation rate of other biodegradable polymers also crucially depends on the environments they end up in, such as soil or marine water, or when used in biomedical devices. In this Minireview, we show that biodegradation tests carried out in artificial environments lack transferability to real conditions and, therefore, highlight the necessity of environmentally authentic and relevant field-testing conditions. In addition, we focus on ecotoxicological implications of biodegradable polymers. We also consider the social aspects and ask how biodegradable polymers influence consumer behavior and municipal waste management. Taken together, this study is intended as a contribution towards evaluating the potential of biodegradable polymers as alternative materials to commodity plastics.

753 citations


Journal ArticleDOI
TL;DR: A new electrolytic Zn-MnO2 battery has a record-high output voltage and an imposing gravimetric capacity, together with a record energy density, and should be of immediate benefit for low-cost practical energy storage and grid-scale applications.
Abstract: Zinc-based electrochemistry is attracting significant attention for practical energy storage owing to its uniqueness in terms of low cost and high safety. However, the grid-scale application is plagued by limited output voltage and inadequate energy density when compared with more conventional Li-ion batteries. Herein, we propose a latent high-voltage MnO2 electrolysis process in a conventional Zn-ion battery, and report a new electrolytic Zn-MnO2 system, via enabled proton and electron dynamics, that maximizes the electrolysis process. Compared with other Zn-based electrochemical devices, this new electrolytic Zn-MnO2 battery has a record-high output voltage of 1.95 V and an imposing gravimetric capacity of about 570 mAh g-1 , together with a record energy density of approximately 409 Wh kg-1 when both anode and cathode active materials are taken into consideration. The cost was conservatively estimated at

676 citations


Journal ArticleDOI
TL;DR: DFT calculations further proved that cooperation between the N-CNTs, Co, and β-Mo2 C results in lower energy barriers of intermediates and thus greatly enhances the HER and OER performance.
Abstract: Herein, we demonstrate the use of heterostructures comprised of Co/β-Mo2 C@N-CNT hybrids for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline electrolyte. The Co can not only create a well-defined heterointerface with β-Mo2 C but also overcomes the poor OER activity of β-Mo2 C, thus leading to enhanced electrocatalytic activity for HER and OER. DFT calculations further proved that cooperation between the N-CNTs, Co, and β-Mo2 C results in lower energy barriers of intermediates and thus greatly enhances the HER and OER performance. This study not only provides a simple strategy for the construction of heterostructures with nonprecious metals, but also provides in-depth insight into the HER and OER mechanism in alkaline solution.

601 citations


Journal ArticleDOI
TL;DR: This Review highlights the most recent advances in visible-light-induced EnT reactions, which provide a distinct reaction pathway for single-electron transfer reactions.
Abstract: Visible-light photocatalysis is a rapidly developing and powerful strategy to initiate organic transformations, as it closely adheres to the tenants of green and sustainable chemistry. Generally, most visible-light-induced photochemical reactions occur through single-electron transfer (SET) pathways. Recently, visible-light-induced energy-transfer (EnT) reactions have received considerable attentions from the synthetic community as this strategy provides a distinct reaction pathway, and remarkable achievements have been made in this field. In this Review, we highlight the most recent advances in visible-light-induced EnT reactions.

596 citations


Journal ArticleDOI
TL;DR: Density functional theory studies reveal that the neighboring Ni-Fe centers not only function in synergy to decrease the reaction barrier for the formation of COOH* and desorption of CO, but also undergo distinct structural evolution into a CO-adsorbed moiety upon CO2 uptake.
Abstract: Polynary single-atom structures can combine the advantages of homogeneous and heterogeneous catalysts while providing synergistic functions based on different molecules and their interfaces. However, the fabrication and identification of such an active-site prototype remain elusive. Here we report isolated diatomic Ni-Fe sites anchored on nitrogenated carbon as an efficient electrocatalyst for CO2 reduction. The catalyst exhibits high selectivity with CO Faradaic efficiency above 90 % over a wide potential range from -0.5 to -0.9 V (98 % at -0.7 V), and robust durability, retaining 99 % of its initial selectivity after 30 hours of electrolysis. Density functional theory studies reveal that the neighboring Ni-Fe centers not only function in synergy to decrease the reaction barrier for the formation of COOH* and desorption of CO, but also undergo distinct structural evolution into a CO-adsorbed moiety upon CO2 uptake.

592 citations


Journal ArticleDOI
TL;DR: This Minireview will focus on nanoparticle-based treatment modalities that can induce and enhance ICD to potentiate cancer immunotherapy.
Abstract: Cancer immunotherapies that train or stimulate the inherent immunological systems to recognize, attack, and eradicate tumor cells with minimal damage to healthy cells have demonstrated promising clinical responses in recent years. However, most of these immunotherapeutic strategies only benefit a small subset of patients and cause systemic autoimmune side effects in some patients. Immunogenic cell death (ICD)-inducing modalities not only directly kill cancer cells but also induce antitumor immune responses against a broad spectrum of solid tumors. Such strategies for generating vaccine-like functions could be used to stimulate a "cold" tumor microenvironment to become an immunogenic, "hot" tumor microenvironment, working in synergy with immunotherapies to increase patient response rates and lead to successful treatment outcomes. This Minireview will focus on nanoparticle-based treatment modalities that can induce and enhance ICD to potentiate cancer immunotherapy.

558 citations


Journal ArticleDOI
TL;DR: The recent progress in charge separation advanced by different types of polarization, such as macroscopic polarization, piezoelectric polarization, ferroelectric polarization, and surface polarization, is highlighted and the strategies and challenges for polarization enhancement to further enhance charge separation and photocatalysis are discussed.
Abstract: Semiconductor photocatalysis as a desirable technology shows great potential in environmental remediation and renewable energy generation, but its efficiency is severely restricted by the rapid recombination of charge carriers in the bulk phase and on the surface of photocatalysts. Polarization has emerged as one of the most effective strategies for addressing the above-mentioned issues, thus effectively promoting photocatalysis. This review summarizes the recent advances on improvements of photocatalytic activity by polarization-promoted bulk and surface charge separation. Highlighted is the recent progress in charge separation advanced by different types of polarization, such as macroscopic polarization, piezoelectric polarization, ferroelectric polarization, and surface polarization, and the related mechanisms. Finally, the strategies and challenges for polarization enhancement to further enhance charge separation and photocatalysis are discussed.

550 citations


Journal ArticleDOI
TL;DR: Single Mo atoms anchored to nitrogen-doped porous carbon as a cost-effective catalyst for the NRR achieves a high NH3 yield rate and a high Faradaic efficiency, considerably higher compared to previously reported non-precious-metal electrocatalysts.
Abstract: NH3 synthesis by the electrocatalytic N2 reduction reaction (NRR) under ambient conditions is an appealing alternative to the currently employed industrial method-the Haber-Bosch process-that requires high temperature and pressure. We report single Mo atoms anchored to nitrogen-doped porous carbon as a cost-effective catalyst for the NRR. Benefiting from the optimally high density of active sites and hierarchically porous carbon frameworks, this catalyst achieves a high NH3 yield rate (34.0±3.6 μg NH 3 h-1 mgcat. -1 ) and a high Faradaic efficiency (14.6±1.6 %) in 0.1 m KOH at room temperature. These values are considerably higher compared to previously reported non-precious-metal electrocatalysts. Moreover, this catalyst displays no obvious current drop during a 50 000 s NRR, and high activity and durability are achieved in 0.1 m HCl. The findings provide a promising lead for the design of efficient and robust single-atom non-precious-metal catalysts for the electrocatalytic NRR.

510 citations


Journal ArticleDOI
TL;DR: In this article, a synergistic method that combines the Cu-Zn solid solution interface on a copper mesh skeleton with good zinc affinity and a polyacrylamide electrolyte additive to modify the zinc anode, which can greatly reduce the overpotential of the zinc nucleation and increase the stability of zinc deposition, is presented.
Abstract: Rechargeable aqueous zinc-ion batteries have been considered as a promising candidate for next-generation batteries. However, the formation of zinc dendrites are the most severe problems limiting their practical applications. To develop stable zinc metal anodes, a synergistic method is presented that combines the Cu-Zn solid solution interface on a copper mesh skeleton with good zinc affinity and a polyacrylamide electrolyte additive to modify the zinc anode, which can greatly reduce the overpotential of the zinc nucleation and increase the stability of zinc deposition. The as-prepared zinc anodes show a dendrite-free plating/stripping behavior over a wide range of current densities. The symmetric cell using this dendrite-free anode can be cycled for more than 280 h with a very low voltage hysteresis (93.1 mV) at a discharge depth of 80 %. The high capacity retention and low polarization are also realized in Zn/MnO2 full cells.

509 citations


Journal ArticleDOI
TL;DR: This minireview discusses the strategies for improving the electrochemical performance of vanadium-based cathodes, including insertion of metal ions, adjustment of structural water, selection of conductive additives and optimization of electrolytes.
Abstract: Aqueous zinc-ion batteries (ZIBs) are considered promising energy storage devices for large-scale energy storage systems as a consequence of their safety benefits and low cost. In recent years, various vanadium-based compounds have been widely developed to serve as the cathodes of aqueous ZIBs because of their low cost and high theoretical capacity. Furthermore, different energy storage mechanisms are observed in ZIBs based on vanadium-based cathodes. In this Minireview, we present a comprehensive overview of the energy storage mechanisms and structural features of various vanadium-based cathodes in ZIBs. Furthermore, we discuss strategies for improving the electrochemical performance of vanadium-based cathodes; including, insertion of metal ions, adjustment of structural water, selection of conductive additives, and optimization of electrolytes. Finally, this Minireview offers insight into potential future directions in the design of innovative vanadium-based electrode materials.

Journal ArticleDOI
TL;DR: The spatial isolation of cobalt species on the atomic scale is reported by tuning the zinc dopant content in predesigned bimetallic Zn/Co zeolitic imidazole frameworks (ZnCo-ZIFs), which led to the synthesis of nanoparticles, atomic clusters, and single atoms of Co catalysts on N-doped porous carbon.
Abstract: The size effect of transition-metal nanoparticles on electrocatalytic performance remains ambiguous especially when decreasing the size to the atomic level. Herein, we report the spatial isolation of cobalt species on the atomic scale, which was achieved by tuning the zinc dopant content in predesigned bimetallic Zn/Co zeolitic imidazole frameworks (ZnCo-ZIFs), and led to the synthesis of nanoparticles, atomic clusters, and single atoms of Co catalysts on N-doped porous carbon. This synthetic strategy allowed an investigation of the size effect on electrochemical behavior from nanometer to Angstrom dimensions. Single-atom Co catalysts showed superior bifunctional ORR/OER activity, durability, and reversibility in Zn-air batteries compared with the other derivatives and noble-metal Pt/C+RuO2 , which was attributed to the high reactivity and stability of isolated single Co atoms. Our findings open up a new avenue to regulate the metal particle size and catalytic performance of MOF derivatives.

Journal ArticleDOI
TL;DR: In this paper, a single-atom nanozyme (SAzyme) based on a zinc-based zeolitic-imidazolate-framework (ZIF-8)-derived carbon nanomaterial containing atomically dispersed zinc atoms was investigated.
Abstract: Single-atom catalysts (SACs), as homogeneous catalysts, have been widely explored for chemical catalysis. However, few studies focus on the applications of SACs in enzymatic catalysis. Herein, we report that a zinc-based zeolitic-imidazolate-framework (ZIF-8)-derived carbon nanomaterial containing atomically dispersed zinc atoms can serve as a highly efficient single-atom peroxidase mimic. To reveal its structure-activity relationship, the structural evolution of the single-atom nanozyme (SAzyme) was systematically investigated. Furthermore, the coordinatively unsaturated active zinc sites and catalytic mechanism of the SAzyme are disclosed using density functional theory (DFT) calculations. The SAzyme, with high therapeutic effect and biosafety, shows great promises for wound antibacterial applications.

Journal ArticleDOI
TL;DR: This Minireview summarizes commonly used powerful DCBs formed by simple, often "click" reactions, and highlights the powerful materials that can result.
Abstract: Dynamic covalent bonds (DCBs) have received significant attention over the past decade. These are covalent bonds that are capable of exchanging or switching between several molecules. Particular focus has recently been on utilizing these DCBs in polymeric materials. Introduction of DCBs into a polymer material provides it with powerful properties including self-healing, shape-memory properties, increased toughness, and ability to relax stresses as well as to change from one macromolecular architecture to another. This Minireview summarizes commonly used powerful DCBs formed by simple, often "click" reactions, and highlights the powerful materials that can result. Challenges and potential future developments are also discussed.

Journal ArticleDOI
Ling Fan1, Ruifang Ma1, Qingfeng Zhang1, Xinxin Jia1, Bingan Lu1 
TL;DR: Graphite anode as anode for potassium ion battery (PIBs) possesses the merits of low cost and potentially high energy density, while suffers from limited cycle time and inferior stability, it is demonstrated that formation of a robust inorganic-rich passivation layer on the graphite anodes could resolve these dilemmas.
Abstract: Graphite as an anode for the potassium ion battery (PIBs) has the merits of low cost and potentially high energy density, while suffering from limited cycle time and inferior stability. Herein we, using a concentrated electrolyte, demonstrate that formation of a robust inorganic-rich passivation layer on the graphite anode could resolve these problems. Consequently, the PIBs with graphite anode could operate for over 2000 cycles (running time of over 17 months) with negligible capacity decay, and had a high area capacity over 7.36 mAh cm-2 with a high mass loading of 28.56 mg cm-2 . These unprecedented performances of graphite are comparable to that of traditional lithium-ion batteries, and may promote the rapidly development of high performance PIBs.

Journal ArticleDOI
TL;DR: Density functional theory calculations and experimental results reveal that the electron transfer from CoP to Co-MOF through N-P/N-Co bonds could lead to the optimized adsorption energy of H2 O and hydrogen, which contributes to the remarkable HER performance.
Abstract: Although electrocatalysts based on transition metal phosphides (TMPs) with cationic/anionic doping have been widely studied for hydrogen evolution reaction (HER), the origin of performance enhancement still remains elusive mainly due to the random dispersion of dopants. Herein, we report a controllable partial phosphorization strategy to generate CoP species within the Co-based metal-organic framework (Co-MOF). Density functional theory calculations and experimental results reveal that the electron transfer from CoP to Co-MOF through N-P/N-Co bonds could lead to the optimized adsorption energy of H2 O (ΔG H 2 O * ) and hydrogen (ΔGH* ), which, together with the unique porous structure of Co-MOF, contributes to the remarkable HER performance with an overpotential of 49 mV at a current density of 10 mA cm-2 in 1 m phosphate buffer solution (PBS, pH 7.0). The excellent catalytic performance exceeds almost all the documented TMP-based and non-noble-metal-based electrocatalysts. In addition, the CoP/Co-MOF hybrid also displays Pt-like performance in 0.5 m H2 SO4 and 1 m KOH, with the overpotentials of 27 and 34 mV, respectively, at a current density of 10 mA cm-2 .

Journal ArticleDOI
TL;DR: The aim of this Review is to present recent investigations that elucidate the origin of the strong and versatile adsorption capacities of the catechol moiety and the effects of extrinsic factors that play important roles in the overall adhesion process, such as pH value, solvent, and the presence of metal ions.
Abstract: The adhesion of some marine organisms to almost any kind of surface in wet conditions has aroused increasing interest in recent decades. Numerous fundamental studies have been performed to understand the scientific basis of this behaviour, with catechols having been found to play a key role. Several novel bio-inspired adhesives and coatings with value-added performances have been developed by taking advantage of the knowledge gained from these studies. To date there has been no detailed overview focusing exclusively on the complex mode of action of these materials. The aim of this Review is to present recent investigations that elucidate the origin of the strong and versatile adsorption capacities of the catechol moiety and the effects of extrinsic factors that play important roles in the overall adhesion process, such as pH value, solvent, and the presence of metal ions. The aim is to detail the chemistry behind the astonishing properties of natural and synthetic catechol-based adhesive materials.

Journal ArticleDOI
TL;DR: The discussion will use selected case studies to highlight how mechanistic investigations can be instrumental in guiding the invention and development of synthetically useful photocatalytic transformations.
Abstract: The fast-moving fields of photoredox and photocatalysis have recently provided fresh opportunities to expand the potential of synthetic organic chemistry. Advances in light-mediated processes have mainly been guided so far by empirical findings and the quest for reaction invention. The general perception, however, is that photocatalysis is entering a more mature phase where the combination of experimental and mechanistic studies will play a dominant role in sustaining further innovation. This Review outlines the key mechanistic studies to consider when developing a photochemical process, and the best techniques available for acquiring relevant information. The discussion will use selected case studies to highlight how mechanistic investigations can be instrumental in guiding the invention and development of synthetically useful photocatalytic transformations.

Journal ArticleDOI
TL;DR: This study provides a three-in-one integrated solution to advance the performance of photocatalysts for solar-energy conversion and generation of renewable energy.
Abstract: Hongjian Yu, Jieyuan Li, Yihe Zhang, Songqiu Yang, Keli Han, Fan Dong, Tianyi Ma, Hongwei Huang

Journal ArticleDOI
TL;DR: A class of novel hollow porous carbons, featuring well dispersed dopants of nitrogen and single Zn atoms, have been fabricated, based on the templated growth of a hollow metal-organic framework precursor, followed by pyrolysis, which achieves efficient catalytic CO2 cycloaddition with epoxides.
Abstract: The development of efficient and low energy-consumption catalysts for CO2 conversion is desired, yet remains a great challenge. Herein, a class of novel hollow porous carbons (HPC), featuring well dispersed dopants of nitrogen and single Zn atoms, have been fabricated, based on the templated growth of a hollow metal-organic framework precursor, followed by pyrolysis. The optimized HPC-800 achieves efficient catalytic CO2 cycloaddition with epoxides, under light irradiation, at ambient temperature, by taking advantage of an ultrahigh loading of (11.3 wt %) single-atom Zn and uniform N active sites, high-efficiency photothermal conversion as well as the hierarchical pores in the carbon shell. As far as we know, this is the first report on the integration of the photothermal effect of carbon-based materials with single metal atoms for catalytic CO2 fixation.

Journal ArticleDOI
TL;DR: This work proves the feasibility of using a nonmetallic simple substance as a nitrogen-fixing catalyst and thus opening a new avenue towards the development of more efficient metal-free catalysts.
Abstract: Constructing efficient catalysts for the N2 reduction reaction (NRR) is a major challenge for artificial nitrogen fixation under ambient conditions. Herein, inspired by the principle of "like dissolves like", it is demonstrated that a member of the nitrogen family, well-exfoliated few-layer black phosphorus nanosheets (FL-BP NSs), can be used as an efficient nonmetallic catalyst for electrochemical nitrogen reduction. The catalyst can achieve a high ammonia yield of 31.37 μg h-1 mg-1 cat. under ambient conditions. Density functional theory calculations reveal that the active orbital and electrons of zigzag and diff-zigzag type edges of FL-BP NSs enable selective electrocatalysis of N2 to NH3 via an alternating hydrogenation pathway. This work proves the feasibility of using a nonmetallic simple substance as a nitrogen-fixing catalyst and thus opening a new avenue towards the development of more efficient metal-free catalysts.


Journal ArticleDOI
TL;DR: This work encapsulates low-cost CH3 NH3 PbI3 (MAPbI 3 ) perovskite QDs in the pores of earth-abundant Fe-porphyrin based metal organic framework PCN-221(Fex) by a sequential deposition route to construct a series of composite photocatalysts protected by the MOF, which exhibit much improved stability in reaction systems containing water.
Abstract: Improving the stability of lead halide perovskite quantum dots (QDs) in a system containing water is the key for their practical application in artificial photosynthesis. Herein, we encapsulate low-cost CH3 NH3 PbI3 (MAPbI3 ) perovskite QDs in the pores of earth-abundant Fe-porphyrin based metal organic framework (MOF) PCN-221(Fex ) by a sequential deposition route, to construct a series of composite photocatalysts of MAPbI3 @PCN-221(Fex ) (x=0-1). Protected by the MOF the composite photocatalysts exhibit much improved stability in reaction systems containing water. The close contact of QDs to the Fe catalytic site in the MOF, allows the photogenerated electrons in the QDs to transfer rapidly the Fe catalytic sites to enhance the photocatalytic activity for CO2 reduction. Using water as an electron source, MAPbI3 @PCN-221(Fe0.2 ) exhibits a record-high total yield of 1559 μmol g-1 for photocatalytic CO2 reduction to CO (34 %) and CH4 (66 %), 38 times higher than that of PCN-221(Fe0.2 ) in the absence of perovskite QDs.


Journal ArticleDOI
TL;DR: In this paper, a competitive complexation strategy has been developed to construct a novel electrocatalyst with Zn-Co atomic pairs coordinated on N doped carbon support (Zn/CoN-C).
Abstract: A competitive complexation strategy has been developed to construct a novel electrocatalyst with Zn-Co atomic pairs coordinated on N doped carbon support (Zn/CoN-C). Such architecture offers enhanced binding ability of O2 , significantly elongates the O-O length (from 1.23 A to 1.42 A), and thus facilitates the cleavage of O-O bond, showing a theoretical overpotential of 0.335 V during ORR process. As a result, the Zn/CoN-C catalyst exhibits outstanding ORR performance in both alkaline and acid conditions with a half-wave potential of 0.861 and 0.796 V respectively. The in situ XANES analysis suggests Co as the active center during the ORR. The assembled zinc-air battery with Zn/CoN-C as cathode catalyst presents a maximum power density of 230 mW cm-2 along with excellent operation durability. The excellent catalytic activity in acid is also verified by H2 /O2 fuel cell tests (peak power density of 705 mW cm-2 ).

Journal ArticleDOI
TL;DR: It is shown that compared to homometallic MOFs, MM-MOFs bring about the opportunity to take advantage of the complexity and the synergism derived from the presence of different metal ions in the structure of MOFs.
Abstract: Mixed-metal metal-organic frameworks (MM-MOFs) can be considered to be those MOFs having two different metals anywhere in the structure. Herein we summarize the various strategies for the preparation of MM-MOFs and some of their applications in adsorption, gas separation, and catalysis. It is shown that compared to homometallic MOFs, MM-MOFs bring about the opportunity to take advantage of the complexity and the synergism derived from the presence of different metal ions in the structure of MOFs. This is reflected in a superior performance and even stability of MM-MOFs respect to related single-metal MOFs. Emphasis is made on the use of MM-MOFs as catalysts for tandem reactions.

Journal ArticleDOI
TL;DR: A Z-scheme heterojunction of 2D/2D BP/monolayer Bi2 WO6 (MBWO) is fabricated by a simple and effective method, which broadens applications of BP and highlights its promise in the treatment of environmental pollution and renewable energy issues.
Abstract: Black phosphorus (BP), a star-shaped two-dimensional material, has attracted considerable attention owing to its unique chemical and physical properties. BP shows great potential in photocatalysis area because of its excellent optical properties; however, its applications in this field have been limited to date. Now, a Z-scheme heterojunction of 2D/2D BP/monolayer Bi2 WO6 (MBWO) is fabricated by a simple and effective method. The BP/MBWO heterojunction exhibits enhanced photocatalytic performance in photocatalytic water splitting to produce H2 and NO removal to purify air; the highest H2 evolution rate of BP/MBWO is 21042 μmol g-1 , is 9.15 times that of pristine MBWO and the NO removal ratio was as high as 67 %. A Z-scheme photocatalytic mechanism is proposed based on monitoring of . O2 - , . OH, NO2 , and NO3 - species in the reaction. This work broadens applications of BP and highlights its promise in the treatment of environmental pollution and renewable energy issues.

Journal ArticleDOI
TL;DR: Por-sp2 c-COF, a novel two-dimensional porphyrin-based sp2 carbon-conjugated COF, which adopts an eclipsed AA stacking structure with a Brunauer-Emmett-Teller surface area shows a high chemical stability under various conditions and can be used as a metal-free heterogeneous photocatalyst for the visible-light-induced aerobic oxidation of amines to imines.
Abstract: The construction of stable covalent organic frameworks (COFs) for various applications is highly desirable. Herein, we report the synthesis of a novel two-dimensional (2D) porphyrin-based sp2 carbon-conjugated COF (Por-sp2 c-COF), which adopts an eclipsed AA stacking structure with a Brunauer-Emmett-Teller surface area of 689 m2 g-1 . Owing to the C=C linkages, Por-sp2 c-COF shows a high chemical stability under various conditions, even under harsh conditions such as 9 m HCl and 9 m NaOH solutions. Interestingly, Por-sp2 c-COF can be used as a metal-free heterogeneous photocatalyst for the visible-light-induced aerobic oxidation of amines to imines. More importantly, in comparison to imine-linked Por-COF, the inherent structure of Por-sp2 c-COF equips it with several advantages as a photocatalyst, including reusability and high photocatalytic performance. This clearly demonstrates that sp2 carbon-linked 2D COFs can provide an interesting platform for heterogeneous photocatalysis.

Journal ArticleDOI
TL;DR: It is reported that an atomically dispersed Zn-N-C catalyst with an ultrahigh Zn loading of 9.33 wt % could be successfully prepared by simply adopting a very low annealing rate of 1° min-1 and significantly better ORR stability than Fe-n-C catalysts in both acidic and alkaline media.
Abstract: Atomically dispersed Zn-N-C nanomaterials are promising platinum-free catalysts for the oxygen reduction reaction (ORR). However, the fabrication of Zn-N-C catalysts with a high Zn loading remains a formidable challenge owing to the high volatility of the Zn precursor during high-temperature annealing. Herein, we report that an atomically dispersed Zn-N-C catalyst with an ultrahigh Zn loading of 9.33 wt % could be successfully prepared by simply adopting a very low annealing rate of 1° min-1 . The Zn-N-C catalyst exhibited comparable ORR activity to that of Fe-N-C catalysts, and significantly better ORR stability than Fe-N-C catalysts in both acidic and alkaline media. Further experiments and DFT calculations demonstrated that the Zn-N-C catalyst was less susceptible to protonation than the corresponding Fe-N-C catalyst in an acidic medium. DFT calculations revealed that the Zn-N4 structure is more electrochemically stable than the Fe-N4 structure during the ORR process.

Journal ArticleDOI
TL;DR: This Minireview highlights the opportunities offered by APSCs, selected polymer families suitable for these devices with optimization to enhance the performance further, and discusses the challenges facing APSC development for commercial applications.
Abstract: For over two decades bulk-heterojunction polymer solar cell (BHJ-PSC) research was dominated by donor:acceptor BHJ blends based on polymer donors and fullerene molecular acceptors. This situation has changed recently, with non-fullerene PSCs developing very rapidly. The power conversion efficiencies of non-fullerene PSCs have now reached over 15 %, which is far above the most efficient fullerene-based PSCs. Among the various non-fullerene PSCs, all-polymer solar cells (APSCs) based on polymer donor-polymer acceptor BHJs have attracted growing attention, due to the following attractions: 1) large and tunable light absorption of the polymer donor/polymer acceptor pair; 2) robustness of the BHJ film morphology; 3) compatibility with large scale/large area manufacturing; 4) long-term stability of the cell to external environmental and mechanical stresses. This Minireview highlights the opportunities offered by APSCs, selected polymer families suitable for these devices with optimization to enhance the performance further, and discusses the challenges facing APSC development for commercial applications.