scispace - formally typeset
Search or ask a question

Showing papers in "Annales Geophysicae in 2000"


Journal ArticleDOI
TL;DR: In this article, a coupled thermosphere-ionosphere computational model (CTIP) was proposed to explain the variations in the peak F2-layer electron density (NmF2) at midlatitudes.
Abstract: The companion paper by Zou et al. shows that the annual and semiannual variations in the peak F2-layer electron density (NmF2) at midlatitudes can be reproduced by a coupled thermosphere-ionosphere computational model (CTIP), without recourse to external influences such as the solar wind, or waves and tides originating in the lower atmosphere. The present work discusses the physics in greater detail. It shows that noon NmF2 is closely related to the ambient atomic/molecular concentration ratio, and suggests that the variations of NmF2 with geographic and magnetic longitude are largely due to the geometry of the auroral ovals. It also concludes that electric fields play no important part in the dynamics of the midlatitude thermosphere. Our modelling leads to the following picture of the global three-dimensional thermospheric circulation which, as envisaged by Duncan, is the key to explaining the F2-layer variations. At solstice, the almost continuous solar input at high summer latitudes drives a prevailing summer-to-winter wind, with upwelling at low latitudes and throughout most of the summer hemisphere, and a zone of downwelling in the winter hemisphere, just equatorward of the auroral oval. These motions affect thermospheric composition more than do the alternating day/night (up-and-down) motions at equinox. As a result, the thermosphere as a whole is more molecular at solstice than at equinox. Taken in conjunction with the well-known relation of F2-layer electron density to the atomic/molecular ratio in the neutral air, this explains the F2-layer semiannual effect in NmF2 that prevails at low and middle latitudes. At higher midlatitudes, the seasonal behaviour depends on the geographic latitude of the winter downwelling zone, though the effect of the composition changes is modified by the large solar zenith angle at midwinter. The zenith angle effect is especially important in longitudes far from the magnetic poles. Here, the downwelling occurs at high geographic latitudes, where the zenith angle effect becomes overwhelming and causes a midwinter depression of electron density, despite the enhanced atomic/molecular ratio. This leads to a semiannual variation of NmF2. A different situation exists in winter at longitudes near the magnetic poles, where the downwelling occurs at relatively low geographic latitudes so that solar radiation is strong enough to produce large values of NmF2. This circulation-driven mechanism provides a reasonably complete explanation of the observed pattern of F2 layer annual and semiannual quiet-day variations.

279 citations


Journal ArticleDOI
TL;DR: In this article, Tomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network of global positioning system (GPS) receivers.
Abstract: . Tomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network of global positioning system (GPS) receivers. We show here how GPS data are processed to obtain the tropospheric slant wet delays and discuss the validity of the processing. These slant wet delays are the observables in the tomographic processing. We then discuss the inverse problem in 4D tropospheric tomography making extensive use of simulations to test the system and define the resolution and the impact of noise. Finally, we use data from the Kilauea network in Hawaii for February 1, 1997, and a local 4×4×40 voxel grid on a region of 400 km2 and 15 km in height to produce the corresponding 4D wet refractivity fields, which are then validated using forecast analysis from the European Center for Medium Range Weather Forecast (ECMWF). We conclude that tomographic techniques can be used to monitor the troposphere in time and space. Key words: Radio science (remote sensing; instruments and techniques)

245 citations


Journal ArticleDOI
TL;DR: In this article, the authors reviewed some aspects of the ionospheric F-layer in the vicinity of the geomagnetic equator, focusing on the large-scale structure rather than the smaller-scale instability phenomena.
Abstract: . This work reviews some aspects of the ionospheric F-layer in the vicinity of the geomagnetic equator. Starting with a historical introduction, brief summaries are given of the physics that makes the equatorial ionosphere so interesting, concentrating on the large-scale structure rather than the smaller-scale instability phenomena. Several individual topics are then discussed, including eclipse effects, the asymmetries of the `equatorial trough', variations with longitude, the semiannual variation, the effects of the global thermospheric circulation, and finally the equatorial neutral thermosphere, including `superrotation' and possible topographic influences. Keyword: Ionosphere (equatorial ionosphere)

188 citations


Journal ArticleDOI
TL;DR: In this paper, the water mass distribution in northern Fram Strait and over the Yermak Plateau in summer 1997 was described using CTD data from two cruises in the area, and it was shown that the circulation pattern alternates between a strong recirculation of the West Spitsbergen Current in the strait, and a larger exchange of Atlantic Water between the Nordic Seas and the inner parts of the Arctic Ocean.
Abstract: . The water mass distribution in northern Fram Strait and over the Yermak Plateau in summer 1997 is described using CTD data from two cruises in the area. The West Spitsbergen Current was found to split, one part recirculated towards the west, while the other part, on entering the Arctic Ocean separated into two branches. The main inflow of Atlantic Water followed the Svalbard continental slope eastward, while a second, narrower, branch stayed west and north of the Yermak Plateau. The water column above the southeastern flank of the Yermak Plateau was distinctly colder and less saline than the two inflow branches. Immediately west of the outer inflow branch comparatively high temperatures in the Atlantic Layer suggested that a part of the extraordinarily warm Atlantic Water, observed in the boundary current in the Eurasian Basin in the early 1990s, was now returning, within the Eurasian Basin, toward Fram Strait. The upper layer west of the Yermak Plateau was cold, deep and comparably saline, similar to what has recently been observed in the interior Eurasian Basin. Closer to the Greenland continental slope the salinity of the upper layer became much lower, and the temperature maximum of the Atlantic Layer was occasionally below 0.5 °C, indicating water masses mainly derived from the Canadian Basin. This implies that the warm pulse of Atlantic Water had not yet made a complete circuit around the Arctic Ocean. The Atlantic Water of the West Spitsbergen Current recirculating within the strait did not extend as far towards Greenland as in the 1980s, leaving a broader passage for waters from the Atlantic and intermediate layers, exiting the Arctic Ocean. A possible interpretation is that the circulation pattern alternates between a strong recirculation of the West Spitsbergen Current in the strait, and a larger exchange of Atlantic Water between the Nordic Seas and the inner parts of the Arctic Ocean. Key words: Oceanography: general (Arctic and Antarctic oceanography; water masses) - Oceanography: physical (general circulation)

154 citations


Journal ArticleDOI
TL;DR: In this paper, Rishbeth et al. compared with the coupled thermosphere-ionosphere-plasmasphere computational model (CTIP) for geomagnetically quiet conditions.
Abstract: Annual, seasonal and semiannual variations of F2-layer electron density (NmF2) and height (hmF2) have been compared with the coupled thermosphere-ionosphere-plasmasphere computational model (CTIP), for geomagnetically quiet conditions. Compared with results from ionosonde data from midlatitudes, CTIP reproduces quite well many observed features of NmF2, such as the dominant winter maxima at high midlatitudes in longitude sectors near the magnetic poles, the equinox maxima in sectors remote from the magnetic poles and at lower latitudes generally, and the form of the month-to-month variations at latitudes between about 60°N and 50°S. CTIP also reproduces the seasonal behaviour of NmF2 at midnight and the summer-winter changes of hmF2. Some features of the F2-layer, not reproduced by the present version of CTIP, are attributed to processes not included in the modelling. Examples are the increased prevalence of the winter maxima of noon NmF2 at higher solar activity, which may be a consequence of the increase of F2-layer loss rate in summer by vibrationally excited molecular nitrogen, and the semiannual variation in hmF2, which may be due to tidal effects. An unexpected feature of the computed distributions of NmF2 is an east-west hemisphere difference, which seems to be linked to the geomagnetic field configuration. Physical discussion is reserved to the companion paper by Rishbeth et al.

137 citations


Journal ArticleDOI
TL;DR: The ALOMAR Rayleigh/Mie/Raman Lidar (RRL) as discussed by the authors is one of the state-of-the-art multiuser LIDAR systems.
Abstract: We report on the development and current capabilities of the ALOMAR Rayleigh/Mie/Raman lidar. This instrument is one of the core instruments of the international ALOMAR facility, located near And- enes in Norway at 69∞N and 16∞E. The major task of the instrument is to perform advanced studies of the Arctic middle atmosphere over altitudes between about 15 to 90 km on a climatological basis. These studies address questions about the thermal structure of the Arctic middle atmosphere, the dynamical processes acting therein, and of aerosols in the form of stratospheric background aerosol, polar stratospheric clouds, nocti- lucent clouds, and injected aerosols of volcanic or anthropogenic origin. Furthermore, the lidar is meant to work together with other remote sensing instruments, both ground- and satellite-based, and with balloon- and rocket-borne instruments performing in situ observa- tions. The instrument is basically a twin lidar, using two independent power lasers and two tiltable receiving telescopes. The power lasers are Nd:YAG lasers emit- ting at wavelengths 1064, 532, and 355 nm and produc- ing 30 pulses per second each. The power lasers are highly stabilized in both their wavelengths and the directions of their laser beams. The laser beams are emitted into the atmosphere fully coaxial with the line- of-sight of the receiving telescopes. The latter use primary mirrors of 1.8 m diameter and are tiltable within 30∞ oA zenith. Their fields-of-view have 180 lrad angular diameter. Spectral separation, filtering, and detection of the received photons are made on an optical bench which carries, among a multitude of other optical components, three double Fabry-Perot interferometers (two for 532 and one for 355 nm) and one single Fabry- Perot interferometer (for 1064 nm). A number of separate detector channels also allow registration of photons which are produced by rotational-vibrational and rotational Raman scatter on N2 and N2+O2 molecules, respectively. Currently, up to 36 detector channels simultaneously record the photons collected by the telescopes. The internal and external instrument operations are automated so that this very complex instrument can be operated by a single engineer. Currently the lidar is heavily used for measurements of temperature profiles, of cloud particle properties such as their altitude, particle densities and size distributions, and of stratospheric winds. Due to its very eAective spectral and spatial filtering, the lidar has unique capabilities to work in full sunlight. Under these conditions it can measure temperatures up to 65 km altitude and determine particle size distributions of overhead noctilucent clouds. Due to its very high mechanical and optical stability, it can also employed eAciently under marginal weather conditions when data on the middle atmosphere can be collected only through small breaks in the tropospheric cloud layers.

136 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigate the dayside auroral dynamics and ionospheric convection during an interval when the interplanetary magnetic field (IMF) had predominantly a positive Bz component (northward IMF) but varying By.
Abstract: We investigate the dayside auroral dynamics and ionospheric convection during an interval when the interplanetary magnetic field (IMF) had predominantly a positive Bz component (northward IMF) but varying By. Polar UVI observations of the Northern Hemisphere auroral emission indicate the existence of a region of luminosity near local noon at latitudes poleward of the dayside auroral oval, which we interpret as the iono- spheric footprint of a high-latitude reconnection site. The large field-of-view aAorded by the satellite-borne imager allows an unprecedented determination of the dynamics of this region, which has not previously been possible with ground-based observations. The location of the emission in latitude and magnetic local time varies in response to changes in the orientation of the IMF; the cusp MLT and the IMF By component are especially well correlated, the emission being located in the pre- or post-noon sectors for By 0 nT, respec- tively. Simultaneous ground-based observations of the ionospheric plasma drift are provided by the CUTLASS Finland HF coherent radar. For an interval of IMF By 0 nT, these convection flow measurements suggest the presence of a clockwise-rotating lobe cell contained within the pre-noon dayside polar cap, with a flow reversal closely co-located with the high-latitude lumi- nosity region. This pattern is largely consistent with recent theoretical predictions of the convection flow during northward IMF. We believe that this represents the first direct measurement of the convection flow at the imaged location of the footprint of the high-latitude reconnection site.

106 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the atmospheric angular momentum (AAM) and length of day (LOD) series for their characteristics on interannual time scales during the half-century period 1949 to 1998.
Abstract: Atmospheric angular momentum (AAM) and length of day (LOD) series are investigated for their characteristics on interannual time scales during the half-century period 1949 to 1998. During this epoch, the interannual variability in LOD can be separated natu- rally into three bands: a quasi-biennial, a triennial- quadrennial and one at six-seven years. The atmosphere appears to excite the first two bands, while it does not contribute to the last. Considering the quasi-biennial (QB) band alone, the atmosphere appears to excite most of its signal in LOD, but it arises from separate fluctuations with stratospheric and tropospheric origin. Thus, although close in frequency, stratospheric and tropospheric processes diAer in their amplitude and phase variability. The time shift can be noted especially during the strong El Nino events of 1982-83 and 1997- 98 when both processes have positive phase and thus combine to help produce particularly strong peak in AAM and LOD. In addition, we have reconfirmed the downward propagation in the stratosphere and upward propagation in the troposphere of AAM observed in earlier studies for other variables. In the triennial- quadrennial (TQ) band, time-variable spectral analyses reveal that LOD and AAM contain strong variability, with periods shorter than four years before 1975 and longer thereafter. This signal originates mainly within the troposphere and propagates upwards from the lower to the higher layers of the troposphere. According to a zonal analysis, an equatorial poleward mode, strongly linked to the SOI, explains more than 60% of the total variability at these ranges. In addition, this study also indicates that an equatorward mode, originating within polar latitudes, explains, on average, more than 15% of the triennial-quadrennial oscillation (TQO) variability in AAM, and up to 30% at certain epochs. Finally, a six year period in LOD noted in earlier studies, as well as in lengthier series covering much of the century, is found to be absent in atmospheric excitations, and it is thus likely to arise from mantle/core interactions.

97 citations


Journal ArticleDOI
TL;DR: In this paper, a physical model of the coupled thermosphere and ionosphere has been used to determine the accuracy of model predictions of the ionospheric response to geomagnetic activity, and assess our understanding of the physical processes.
Abstract: . A physical model of the coupled thermosphere and ionosphere has been used to determine the accuracy of model predictions of the ionospheric response to geomagnetic activity, and assess our understanding of the physical processes. The physical model is driven by empirical descriptions of the high-latitude electric field and auroral precipitation, as measures of the strength of the magnetospheric sources of energy and momentum to the upper atmosphere. Both sources are keyed to the time-dependent TIROS/NOAA auroral power index. The output of the model is the departure of the ionospheric F region from the normal climatological mean. A 50-day interval towards the end of 1997 has been simulated with the model for two cases. The first simulation uses only the electric fields and auroral forcing from the empirical models, and the second has an additional source of random electric field variability. In both cases, output from the physical model is compared with F-region data from ionosonde stations. Quantitative model/data comparisons have been performed to move beyond the conventional "visual" scientific assessment, in order to determine the value of the predictions for operational use. For this study, the ionosphere at two ionosonde stations has been studied in depth, one each from the northern and southern mid-latitudes. The model clearly captures the seasonal dependence in the ionospheric response to geomagnetic activity at mid-latitude, reproducing the tendency for decreased ion density in the summer hemisphere and increased densities in winter. In contrast to the "visual" success of the model, the detailed quantitative comparisons, which are necessary for space weather applications, are less impressive. The accuracy, or value, of the model has been quantified by evaluating the daily standard deviation, the root-mean-square error, and the correlation coefficient between the data and model predictions. The modeled quiet-time variability, or standard deviation, and the increases during geomagnetic activity, agree well with the data in winter, but is low in summer. The RMS error of the physical model is about the same as the IRI empirical model during quiet times. During the storm events the RMS error of the model improves on IRI, but there are occasionally false-alarms. Using unsmoothed data over the full interval, the correlation coefficients between the model and data are low, between 0.3 and 0.4. Isolating the storm intervals increases the correlation to between 0.43 and 0.56, and by smoothing the data the values increases up to 0.65. The study illustrates the substantial difference between scientific success and a demonstration of value for space weather applications. Key words: Ionosphere (ionospheric disturbances; mid-latitude ionosphere; modeling and forecasting)

93 citations


Journal ArticleDOI
TL;DR: The ESQUIF project as discussed by the authors is the first integrated project dedicated to the study of the processes leading to air pollution events over the Paris area, which was carried out over two years (summer 1998 to winter 2000) to document all types of meteorological conditions favourable to air quality degradation, and in particular to photo oxydant formation.
Abstract: . The "Etude et Simulation de la QUalite de l'air en Ile de France" (ESQUIF) project is the first integrated project dedicated to the study of the processes leading to air pollution events over the Paris area. The project was carried out over two years (summer 1998 to winter 2000) to document all types of meteorological conditions favourable to air quality degradation, and in particular to photo oxydant formation. The goals of ESQUIF are (1) to improve our understanding of the relevant chemical and dynamical processes and, in turn, improve their parametrizations in numerical models, and (2) to improve and validate existing models dedicated to pollution analysis, scenarios and/or forecasting, by establishing a comprehensive and thorough database. We present the rationale of the ESQUIF project and we describe the experimental set-up. We also report on the first experiments which took place during the summer of 1998 involving surface networks, and remote sensing instruments as well as several aircraft. Focusing on three days of August 1998, the relative contributions of long-range transported and locally-produced ozone to the elevated ozone concentrations observed during this period are discussed and chemistry-transport model preliminary results on this period are compared to measurements. Key words: Atmospheric composition and structure (pollution – urban and regional; troposphere – composition and chemistry) – Meteorology and atmospheric dynamics (mesoscale meteorology)

86 citations


Journal ArticleDOI
TL;DR: In this paper, the authors described the 178.7-year basic cycle of solar motion and found that the longer cycle, over an 8000 year interval, averaged 2402.2 years.
Abstract: . A solar activity cycle of about 2400 years has until now been of uncertain origin. Recent results indicate it is caused by solar inertial motion. First we describe the 178.7-year basic cycle of solar motion. The longer cycle, over an 8000 year interval, is found to average 2402.2 years. This corresponds to the Jupiter/Heliocentre/Barycentre alignments (9.8855 × 243). Within each cycle an exceptional segment of 370 years has been found characterized by a looping pattern by a trefoil or quasitrefoil geometry. Solar activity, evidenced by 14C tree-ring proxies, shows the same pattern. Solar motion is computable in advance, so this provides a basis for future predictive assessments. The next 370-year segment will occur between AD 2240 and 2610. Key words: Solar physics (celestial mechanics)

Journal ArticleDOI
TL;DR: In this article, the authors applied the method proposed by Danilov and Mikhailov to reveal the foF2 long-term trends on 30 Northern Hemisphere ionosonde stations and found a pronounced dependence of trend magnitude on geomagnetic (invariant) latitude.
Abstract: Further development of the method proposed by Danilov and Mikhailov is presented. The method is applied to reveal the foF2 long-term trends on 30 Northern Hemisphere ionosonde stations. Most of them show significant foF2 trends. A pronounced dependence of trend magnitude on geomagnetic (invariant) latitude is confirmed. Periods of negative/positive foF2 trends corresponding to the periods of long-term increasing/decreasing geomagnetic activity are revealed for the first time. Pronounced diurnal variations of the foF2 trend magnitude are found. Strong positive foF2 trends in the post-midnight-early-morning LT sector and strong negative trends during daytime hours are found on the sub-auroral stations for the period with increasing geomagnetic activity. On the contrary middle and lower latitude stations demonstrate negative trends in the early-morning LT sector and small negative or positive trends during daytime hours for the same period. All the morphological features revealed of the foF2 trends may be explained in the framework of contemporary F2-region storm mechanisms. This newly proposed F2-layer geomagnetic storm concept casts serious doubts on the hypothesis relating the F2-layer parameter long-term trends to the thermosphere cooling due to the greenhouse effect.

Journal ArticleDOI
TL;DR: In this paper, the frequency of pulsed ionospheric flow bursts in the noon-sector high-latitude ionosphere was analyzed using the CUTLASS Finland HF radar.
Abstract: Nearly two years of 2-min resolution data and 7- to 21-s resolution data from the CUTLASS Finland HF radar have undergone Fourier analysis in order to study statistically the occurrence rates and repetition frequencies of pulsed ionospheric flows in the noon-sector high-latitude ionosphere. Pulsed ionospheric flow bursts are believed to be the ionospheric footprint of newly reconnected geomagnetic field lines, which occur during episodes of magnetic flux transfer to the terrestrial magnetosphere - flux transfer events or FTEs. The distribution of pulsed ionospheric flows were found to be well grouped in the radar field of view, and to be in the vicinity of the radar signature of the cusp footprint. Two thirds of the pulsed ionospheric flow intervals included in the statistical study occurred when the interplanetary magnetic field had a southward component, supporting the hypothesis that pulsed ionospheric flows are a reconnection-related phenomenon. The occurrence rate of the pulsed ionospheric flow fluctuation period was independent of the radar scan mode. The statistical results obtained from the radar data are compared to occurrence rates and repetition frequencies of FTEs derived from spacecraft data near the magnetopause reconnection region, and to ground-based optical measurements of poleward moving auroral forms. The distributions obtained by the various instruments in different regions of the magnetosphere were remarkably similar. The radar, therefore, appears to give an unbiased sample of magnetopause activity in its routine observations of the cusp footprint.

Journal ArticleDOI
TL;DR: In this paper, the spectral width boundary is determined during the development and fading of radar cusp backscatter, and a combination of spectral width and shape may advance boundary layer identification by HF radar.
Abstract: The 2D morphology of coherent HF radar and optical cusp aurora has been studied for conditions of predominantly southward IMF conditions, which favours low-latitude boundary layer reconnection. Despite the variability in shape of radar cusp Doppler spectra, the spectral width criterion of ≥220 m s−1 proves to be a robust cusp discriminator. For extended periods of well-developed radar backscatter echoes, the equatorward boundary of the ≥220 m s−1 spectral width enhancement lines up remarkably well with the equatorward boundary of the optical cusp aurora. The spectral width boundary is however poorly determined during development and fading of radar cusp backscatter. Closer inspection of radar Doppler profile characteristics suggests that a combination of spectral width and shape may advance boundary layer identification by HF radar. For the two December days studied the onset of radar cusp backscatter occurred within pre-existing 630.0 nm cusp auroral activity and appear to be initiated by sunrise, i.e. favourable radio wave propagation conditions had to develop. Better methods are put forward for analysing optical data, and for physical interpretation of HF radar data, and for combining these data, as applied to detection, tracking, and better understanding of dayside aurora. The broader motivation of this work is to develop wider use by the scientific community, of results of these techniques, to accelerate understanding of dynamic high-latitude boundary-processes. The contributions in this work are: (1) improved techniques of analysis of observational data, yielding meaningfully enhanced accuracy for deduced cusp locations; (2) a correspondingly more pronounced validation of correlation of boundary locations derived from the observational data set; and (3) a firmer physical rationale as to why the good correlation observed should theoretically be expected.

Journal ArticleDOI
TL;DR: In this article, the Hinotori satellite has been used to determine the yearly variations of the electron density and electron temperature in the low-latitude ionosphere, revealing the existence of an equinoctial asymmetry in the topside electron density at low latitudes.
Abstract: Observations made by the Hinotori satellite have been analysed to determine the yearly variations of the electron density and electron temperature in the low- latitude topside ionosphere. The observations reveal the existence of an equinoctial asymmetry in the topside electron density at low latitudes, i.e. the density is higher at one equinox than at the other. The asymmetry is hemisphere-dependent with the higher electron density occurring at the March equinox in the Northern Hemisphere and at the September equinox in the Southern Hemisphere. The asymmetry becomes stronger with increasing latitude in both hemispheres. The behaviour of the asymmetry has no significant longitu- dinal and magnetic activity variations. A mechanism for the equinoctial asymmetry has been investigated using CTIP (coupled thermosphere ionosphere plasmasphere model). The model results reproduce the observed equinoctial asymmetry and suggest that the asymmetry is caused by the north-south imbalance of the thermo- sphere and ionosphere at the equinoxes due to the slow response of the thermosphere arising from the eAects of the global thermospheric circulation. The observations also show that the relationship between the electron density and electron temperature is diAerent for daytime and nighttime. During daytime the yearly variation of the electron temperature has negative correlation with the electron density, except at magnetic latitudes lower than 10∞. At night, the correlation is positive.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the influence of a selection bias on the obtained path length statistics and derived a mathematical equation that relates the path length distribution to the underlying size distribution of ISSRs, assuming that they have circular shape.
Abstract: In order to determine typical sizes of ice-supersaturated regions (ISSRs) in the upper troposphere and lowermost stratosphere we set up the frequency distribution of path lengths flown by MOZAIC aircraft within ISSRs. The mean path length is about 150 km with a standard deviation of 250 km. We analyse the influence of a selection bias (viz. that large ISSRs are more often crossed by aircraft than small ones) on the obtained path length statistics and derive a mathematical equation that relates the path length distribution to the underlying size distribution of ISSRs, assuming that they have circular shape. We solve the equation (by trial and error) and test the result using numerical simulations. Surprisingly, we find that there may be many more very small ISSRs than apparent from the data such that the true mean diameter of the ISSRs may be of the order a few kilometres only. The relevance of the result is discussed and dedicated research flights to measure the true extension of ISSRs are recommended.

Journal ArticleDOI
TL;DR: In this paper, the authors used the ionospheric data from sixteen stations to study the semiannual and annual variations in the height of the F2-peak, hmF2.
Abstract: Ionosonde data from sixteen stations are used to study the semiannual and annual variations in the height of the ionospheric F2-peak, hmF2. The semiannual variation, which peaks shortly after equinox, has an amplitude of about 8 km at an average level of solar activity (10.7 cm flux = 140 units), both at noon and midnight. The annual variation has an amplitude of about 11 km at northern midlatitudes, peaking in early summer; and is larger at southern stations, where it peaks in late summer. Both annual and semiannual amplitudes increase with increasing solar activity by day, but not at night. The semiannual variation in hmF2 is unrelated to the semiannual variation of the peak electron density NmF2, and is not reproduced by the CTIP and TIME-GCM computational models of the quiet-day thermosphere and ionosphere. The semiannual variation in hmF2 is approximately “isobaric”, in that its amplitude corresponds quite well to the semiannual variation in the height of fixed pressure-levels in the thermosphere, as represented by the MSIS empirical model. The annual variation is not “isobaric”. The annual mean of hmF2 increases with solar 10.7 cm flux, both by night and by day, on average by about 0.45 km/flux unit, rather smaller than the corresponding increase of height of constant pressure-levels in the MSIS model. The discrepancy may be due to solar-cycle variations of thermospheric winds. Although geomagnetic activity, which affects thermospheric density and temperature and therefore hmF2 also, is greatest at the equinoxes, this seems to account for less than half the semiannual variation of hmF2. The rest may be due to a semiannual variation of tidal and wave energy transmitted to the thermosphere from lower levels in the atmosphere.

Journal ArticleDOI
TL;DR: In this paper, the Gibbs free energy changes for forming clusters with n = 1 and 2 were computed from quantum calculations using hybrid density functional/Hartree-Fock (B3LYP) theory and a large basis set with added polarization and diAuse functions.
Abstract: It is proposed that a component of meteoric smoke, sodium bicarbonate (NaHCO3), provides par- ticularly eAective condensation nuclei for noctilucent clouds. This assertion is based on three conditions being met. The first is that NaHCO3 is present at suAcient concentration (10 4 cm )3 ) in the upper mesosphere between 80 and 90 km. It is demonstrated that there is strong evidence for this based on recent laboratory measurements coupled with atmospheric modelling. The second condition is that the thermodynamics of NaHCO3(H2O)n cluster formation allow spontaneous nucleation to occur under mesospheric conditions at temperatures below 140 K. The Gibbs free energy changes for forming clusters with n = 1 and 2 were computed from quantum calculations using hybrid density functional/Hartree-Fock (B3LYP) theory and a large basis set with added polarization and diAuse functions. The results were then extrapolated to higher n using an established dependence of the free energy on cluster size and the free energy for the sublimation of H2O to bulk ice. A 1-dimensional model of sodium chemistry was then employed to show that spontaneous nucleation to form ice particles (n >100) should occur between 84 and 89 km in the high-latitude summer mesosphere. The third condition is that other metallic components of meteoric smoke are less eAective con- densation nuclei, so that the total number of potential nuclei is small relative to the amount of available H2O. Quantum calculations indicate that this is probably the case for major constituents such as Fe(OH)2, FeO3 and MgCO3.

Journal ArticleDOI
TL;DR: In this paper, the mechanism of the F2 peak formation at different levels of solar activity was analyzed using Millstone Hill IS radar observations, showing that the electron temperature follows with the opposite sign the electron density variations in this process.
Abstract: The mechanism of the N m F2 peak formation at different levels of solar activity is analyzed using Millstone Hill IS radar observations. The h m F2 nighttime increase due to thermospheric winds and the downward plasmaspheric fluxes are the key processes responsible for the N m F2 peak formation. The electron temperature follows with the opposite sign the electron density variations in this process. This mechanism provides a consistency with the Millstone Hill observations on the set of main parameters. The observed decrease of the nighttime N m F2 peak amplitude with solar activity is due to faster increasing of the recombination efficiency compared to the plasmaspheric flux increase. The E × B plasma drifts are shown to be inefficient for the N m F2 nighttime peak formation at high solar activity.

Journal ArticleDOI
TL;DR: For rotational states up to j' = 4.5, the relative values of j' transitions yield OH(6-2) rotational temperatures 2 K lower than Langhoff et al. as discussed by the authors, 7 K lower as compared to Mies and 13 K higher than Turnbull and Lowe.
Abstract: . OH(6–2) Q1/P1 and R1/P1 airglow emission intensity ratios, for rotational states up to j' = 4.5, are measured to be lower than implied by transition probabilities published by various authors including Mies, Langhoff et al. and Turnbull and Lowe. Experimentally determined relative values of j' transitions yield OH(6–2) rotational temperatures 2 K lower than Langhoff et al., 7 K lower than Mies and 13 K lower than Turnbull and Lowe. Key words: Atmospheric composition and structure (airglow and aurora; pressure, density and temperature)

Journal ArticleDOI
TL;DR: In this paper, a bispectral analysis applied to the hourly data set of neutral wind measured by meteor radar in the MLT region above Bulgaria was demonstrated that nonlinear processes are frequently and regularly acting in the mesopause region.
Abstract: . On the basis of bispectral analysis applied to the hourly data set of neutral wind measured by meteor radar in the MLT region above Bulgaria it was demonstrated that nonlinear processes are frequently and regularly acting in the mesopause region. They contribute significantly to the short-term tidal variability and are apparently responsible for the observed complicated behavior of the tidal characteristics. A Morlet wavelet transform is proposed as a technique for studying nonstationary signals. By simulated data it was revealed that the Morlet wavelet transform is especially convenient for analyzing signals with: (1) a wide range of dominant frequencies which are localized in different time intervals; (2) amplitude and frequency modulated spectral components, and (3) singular, wave-like events, observed in the neutral wind of the MLT region and connected mainly with large-scale disturbances propagated from below. By applying a Morlet wavelet transform to the hourly values of the amplitudes of diurnal and semidiurnal tides the basic oscillations with periods of planetary waves (1.5-20 days), as well as their development in time, are obtained. A cross-wavelet analysis is used to clarify the relation between the tidal and mean neutral wind variability. The results of bispectral analysis indicate which planetary waves participated in the nonlinear coupling with the atmospheric tides, while the results of cross-wavelet analysis outline their time intervals if these interactions are local. Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides) - Radio science (nonlinear phenomena)

Journal ArticleDOI
TL;DR: In this article, a statistical analysis of two peaks (premidnight and post-midnight) occurrence in NmF2 daily variations was made on a latitudinal chain of four ionosonde stations in the Eurasian longitudinal sector.
Abstract: A statistical analysis of two peaks (pre-midnight and post-midnight) occurrence in NmF2 daily variations was made on a latitudinal chain of four ionosonde stations in the Eurasian longitudinal sector. Overall 6182 cases of the first and 5600 cases of the second peak occurrence were analyzed using all available foF2 observations for the years of solar maximum and minimum. Well-pronounced and systematic variations with season and solar activity were revealed in the occurrence probability of the peaks, their amplitude and timing. The pattern of both peaks occurrence is similar during winter and equinoxes for midlatitude stations implying one and the same mechanism of their formation. The pre-midnight summer peak shows specific variations in particular during solar maximum pointing to a different mechanism controlling its appearance. Possible mechanisms of both peaks formation are discussed.

Journal ArticleDOI
TL;DR: In this article, a case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena, and the authors focused on positive iono- spheric storm eAects in relation to thermospheric disturbances in general and thermosphere composition changes in particular.
Abstract: Current theories of F-layer storms are dis- cussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time de- pendent numerical model of the thermosphere-iono- sphere-plasmasphere-magnetosphere system including electrodynamical coupling eAects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive iono- spheric storm eAects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical eAects of both neutral meridional winds and electric fields caused by the disturbance dynamo eAect. The penetration of short-time electric fields of magneto- spheric origin during storm intensification phases is shown for the first time in this model study. Compar- isons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consis- tent with the simulations. It does not show the equatorward propagation of the disturbances and pre- dicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of (O)/(N2) at high latitudes decreases signif- icantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes) above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs). The calcu- lated zonal electric field disturbances also help to create the positive ionospheric disturbances both at middle and low latitudes. Minor contributions arise from the general density enhancement of all constituents during geomagnetic storms, which favours ion production processes above ion losses at fixed height under day- light conditions.

Journal ArticleDOI
TL;DR: In this paper, a combined EISCAT VHF-radar and heating experiment was carried out in November 1998 with the aim to measure the electron temperature increase due to heating.
Abstract: . The ionospheric electron gas can be heated artificially by a powerful radio wave. According to our modeling, the maximum effect of this heating occurs in the D-region where the electron temperature can increase by a factor of ten. Ionospheric plasma parameters such as Ne, Te and Ti are measured by EISCAT incoherent scatter radar on a routine basis. However, in the D-region the incoherent scatter echo is very weak because of the low electron density. Moreover, the incoherent scatter spectrum from the D-region is of Lorentzian shape which gives less information than the spectrum from the E- and F-regions. These make EISCAT measurements in the D-region difficult. A combined EISCAT VHF-radar and heating experiment was carried out in November 1998 with the aim to measure the electron temperature increase due to heating. In the experiment the heater was switched on/off at 5 minute intervals and the integration time of the radar was chosen synchronously with the heating cycle. A systematic difference in the measured autocorrelation functions was found between heated and unheated periods. Key words: Ionosphere (active experiments; plasma temperature and density; wave propagation)

Journal ArticleDOI
S. Saito1, F. Forme, Stephan Buchert1, Satonori Nozawa1, Ryoichi Fujii1 
TL;DR: In this paper, an incoherent scatter data analysis for a plasma that consists of electrons with kappa distribution function and ions with Maxwellian neglecting the effects of the magnetic field and collisions is presented.
Abstract: . In usual incoherent scatter data analysis, the plasma distribution function is assumed to be Maxwellian. In space plasmas, however, distribution functions with a high energy tail which can be well modeled by a generalized Lorentzian distribution function with spectral index kappa (kappa distribution) have been observed. We have theoretically calculated incoherent scatter spectra for a plasma that consists of electrons with kappa distribution function and ions with Maxwellian neglecting the effects of the magnetic field and collisions. The ion line spectra have a double-humped shape similar to those from a Maxwellian plasma. The electron temperatures are underestimated, however, by up to 40% when interpreted assuming Maxwellian distribution. Ion temperatures and electron densities are affected little. Accordingly, actual electron temperatures might be underestimated when an energy input maintaining a high energy tail exists. We have also calculated plasma lines with the kappa distribution function. They are enhanced in total strength, and the peak frequencies appear to be slightly shifted to the transmitter frequency compared to the peak frequencies for a Maxwellian distribution. The damping rate depends on the electron temperature. For lower electron temperatures, plasma lines for electrons with a κ distribution function are more strongly damped than for a Maxwellian distribution. For higher electron temperatures, however, they have a relatively sharp peak. Key words: Ionosphere (auroral ionosphere; plasma waves and instabilities) – Space plasma physics (kinetic and MHD theory)

Journal ArticleDOI
TL;DR: Ionospheric electron content (IEC) observed at Delhi for the period 1975/80 and 1986/89 belonging to an ascending phase of solar activity during first halves of solar cycles 21 and 22 respectively have been used to study the diurnal, seasonal, solar and magnetic activity variations.
Abstract: Ionospheric electron content (IEC) observed at Delhi (geographic co-ordinates: 28.63°N, 77.22°E; geomagnetic co-ordinates: 19.08°N, 148.91E; dip Latitude 24.8°N), India, for the period 1975/80 and 1986/89 belonging to an ascending phase of solar activity during first halves of solar cycles 21 and 22 respectively have been used to study the diurnal, seasonal, solar and magnetic activity variations. The diurnal variation of seasonal mean of IEC on quiet days shows a secondary peak comparable to the daytime peak in equinox and winter in high solar activity. IECmax (daytime maximum value of IEC, one per day) shows winter anomaly only during high solar activity at Delhi. Further, IECmax shows positive correlation with F10.7 up to about 200 flux units at equinox and 240 units both in winter and summer; for greater F10.7 values, IECmax is substantially constant in all the seasons. IECmax and magnetic activity (Ap) are found to be positively correlated in summer in high solar activity. Winter IECmax shows positive correlation with Ap in low solar activity and negative correlation in high solar activity in both the solar cycles. In equinox IECmax is independent of Ap in both solar cycles in low solar activity. A study of day-to-day variations in IECmax shows single day and alternate day abnormalities, semi-annual and annual variations controlled by the equatorial electrojet strength, and 27-day periodicity attributable to the solar rotation.

Journal ArticleDOI
TL;DR: In this article, a good general agreement is observed between the location and movement of velocity enhancements (flow channels) and the dayside poleward moving auroral forms (PMAFs) between 06:30 and 07:00 UT on December 16, 1998, by the meridian scanning photometer and the all-sky camera at Ny Alesund, Svalbard.
Abstract: Dayside poleward moving auroral forms (PMAFs) were detected between 06:30 and 07:00 UT on December 16, 1998, by the meridian scanning photometer and the all-sky camera at Ny Alesund, Svalbard. Simultaneous SuperDARN HF radar measurements permitted the study of the associated ionospheric velocity pattern. A good general agreement is observed between the location and movement of velocity enhancements (flow channels) and the PMAFs. Clear signatures of equatorward flow were detected in the vicinity of PMAFs. This flow is believed to be the signature of a return flow outside the reconnected flux tube, as predicted by the Southwood model. The simulated signatures of this model reproduce globally the measured signatures, and differences with the experimental data can be explained by the simplifications of the model. Proposed schemes of the flow modification due to the presence of several flow channels and the modification of cusp and region 1 field-aligned currents at the time of sporadic reconnection events are shown to fit well with the observations.

Journal ArticleDOI
TL;DR: In this article, the cusp/cleft ionosphere is shown to correspond to a spatially extended region of elevated electron temperatures in the VHF radar data, consistent with the magnetic curvature force on newly opened field lines for the observed negative IMF By.
Abstract: . We report observations of the cusp/cleft ionosphere made on December 16th 1998 by the EISCAT (European incoherent scatter) VHF radar at Tromso and the EISCAT Svalbard radar (ESR). We compare them with observations of the dayside auroral luminosity, as seen by meridian scanning photometers at Ny Alesund and of HF radar backscatter, as observed by the CUTLASS radar. We study the response to an interval of about one hour when the interplanetary magnetic field (IMF), monitored by the WIND and ACE spacecraft, was southward. The cusp/cleft aurora is shown to correspond to a spatially extended region of elevated electron temperatures in the VHF radar data. Initial conditions were characterised by a northward-directed IMF and cusp/cleft aurora poleward of the ESR. A strong southward turning then occurred, causing an equatorward motion of the cusp/cleft aurora. Within the equatorward expanding, southward-IMF cusp/cleft, the ESR observed structured and elevated plasma densities and ion and electron temperatures. Cleft ion fountain upflows were seen in association with elevated ion temperatures and rapid eastward convection, consistent with the magnetic curvature force on newly opened field lines for the observed negative IMF By. Subsequently, the ESR beam remained immediately poleward of the main cusp/cleft and a sequence of poleward-moving auroral transients passed over it. After the last of these, the ESR was in the polar cap and the radar observations were characterised by extremely low ionospheric densities and downward field-aligned flows. The IMF then turned northward again and the auroral oval contracted such that the ESR moved back into the cusp/cleft region. For the poleward-retreating, northward-IMF cusp/cleft, the convection flows were slower, upflows were weaker and the electron density and temperature enhancements were less structured. Following the northward turning, the bands of high electron temperature and cusp/cleft aurora bifurcated, consistent with both subsolar and lobe reconnection taking place simultaneously. The present paper describes the large-scale behaviour of the ionosphere during this interval, as observed by a powerful combination of instruments. Two companion papers, by Lockwood et al. (2000) and Thorolfsson et al. (2000), both in this issue, describe the detailed behaviour of the poleward-moving transients observed during the interval of southward Bz, and explain their morphology in the context of previous theoretical work. Key words: Ionosphere (ionosphere - magnetosphere interactions; auroral ionosphere; plasma temperature and density)

Journal ArticleDOI
TL;DR: Early auroral observations recorded in various oriental histories are examined in order to search for examples of strictly simultaneous and indisputably independent observations of the aurora borealis from spatially separated sites in East Asia.
Abstract: Early auroral observations recorded in various oriental histories are examined in order to search for examples of strictly simultaneous and indisputably independent observations of the aurora borealis from spatially separated sites in East Asia. In the period up to AD 1700, only five examples have been found of two or more oriental auroral observations from separate sites on the same night. These occurred during the nights of AD 1101 January 31, AD 1138 October 6, AD 1363 July 30, AD 1582 March 8 and AD 1653 March 2. The independent historical evidence describing observations of mid-latitude auroral displays at more than one site in East Asia on the same night provides virtually incontrovertible proof that auroral displays actually occurred on these five special occasions. This conclusion is corroborated by the good level of agreement between the detailed auroral descriptions recorded in the different oriental histories, which furnish essentially compatible information on both the colour (or colours) of each auroral display and its approximate position in the sky. In addition, the occurrence of auroral displays in Europe within two days of auroral displays in East Asia, on two (possibly three) out of these five special occasions, suggests that a substantial number of the mid-latitude auroral displays recorded in the oriental histories are associated with intense geomagnetic storms.

Journal ArticleDOI
TL;DR: In this article, the authors used line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event.
Abstract: . Line-of-sight Doppler velocities from the SuperDARN CUTLASS HF radar pair have been combined to produce the first two-dimensional vector measurements of the convection pattern throughout the ionospheric footprint of a flux transfer event (a pulsed ionospheric flow, or PIF). Very stable and moderate interplanetary magnetic field conditions, along with a preceding prolonged period of northward interplanetary magnetic field, allow a detailed study of the spatial and the temporal evolution of the ionospheric response to magnetic reconnection. The flux tube footprint is tracked for half an hour across six hours of local time in the auroral zone, from magnetic local noon to dusk. The motion of the footprint of the newly reconnected flux tube is compared with the ionospheric convection velocity. Two primary intervals in the PIF's evolution have been determined. For the first half of its lifetime in the radar field of view the phase speed of the PIF is highly variable and the mean speed is nearly twice the ionospheric convection speed. For the final half of its lifetime the phase velocity becomes much less variable and slows down to the ionospheric convection velocity. The evolution of the flux tube in the magnetosphere has been studied using magnetic field, magnetopause and magnetosheath models. The data are consistent with an interval of azimuthally propagating magnetopause reconnection, in a manner consonant with a peeling of magnetic flux from the magnetopause, followed by an interval of anti-sunward convection of reconnected flux tubes. Key words: Magnetospheric physics (magnetosphere · ionosphere interactions; plasma convection; solar wind · magnetosphere interactions)