scispace - formally typeset
Search or ask a question

Showing papers in "Annales Geophysicae in 2002"


Journal ArticleDOI
TL;DR: In this article, the waters in the Eurasian Basin are conditioned by the confluence of the boundary flow of warm, saline Fram Strait water and cold low salinity water from the Barents Sea entering through the St. Anna Trough.
Abstract: . The waters in the Eurasian Basin are conditioned by the confluence of the boundary flow of warm, saline Fram Strait water and cold low salinity water from the Barents Sea entering through the St. Anna Trough. Hydrographic sections obtained from RV Polarstern during the summer of 1996 (ACSYS 96) across the St. Anna Trough and the Voronin Trough in the northern Kara Sea and across the Nansen, Amundsen and Makarov basins allow for the determination of the water mass properties of the two components and the construction of a qualitative picture of the circulation both within the Eurasian Basin and towards the Canadian Basin. At the confluence north of the Kara Sea, the Fram Strait branch is displaced from the upper to the lower slope and it forms a sharp front to the Barents Sea water at depths between 100 m and greater than 1000 m. This front disintegrates downstream along the basin margin and the two components are largely mixed before the boundary current reaches the Lomonosov Ridge. Away from the continental slope, the presence of interleaving structures coherent over wide distances is consistent with low lateral shear. The return flow along the Nansen Gakkel Ridge, if present at all, seems to be slow and the cold water below a deep mixed layer there indicates that the Fram Strait Atlantic water was not covered with a halocline for about a decade. Anomalous water mass properties in the interior of the Eurasian Basin can be attributed to isolated lenses rather than to baroclinic flow cores. Eddies have probably detached from the front at the confluence and migrated into the interior of the basin. One deep (2500 m) lens of Canadian Basin water, with an anticyclonic eddy signature, must have spilled through a gap of the Lomonosov Ridge. During ACSYS 96, no clear fronts between Eurasian and Canadian intermediate waters, such as those observed further north in 1991 and 1994, were found at the Siberian side of the Lomonosov Ridge. This indicates that the Eurasian Basin waters enter the Canadian Basin not only along the continental slope but they may also cross the Lomonosov Ridge at other topographic irregularities. A decrease in salinity around 1000 m in depth in the Amundsen Basin probably originates from a larger input of fresh water to the Barents Sea. The inherent density changes may affect the flow towards the Canadian Basin. Key words. Oceanography: general (Artic and Antartic oceanography; descriptive and regional oceanography) Oceanography: physical (hydrography)

142 citations


Journal ArticleDOI
TL;DR: In this paper, a specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established, and concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships.
Abstract: . It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved. Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions) – space plasma physics (spacecraft sheaths, wakes, charging)

115 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the temporal evolution of the spectral response of the electrons and the waves during the 9 October 1990 geomagnetic storm, and showed that the observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity, as monitored by the A(E) index and enhanced levels of whistler mode chorus waves.
Abstract: We use plasma wave and electron data from the Combined Release and Radiation Effects Satellite (CRRES) to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by gyroresonant interactions with whistler mode chorus. In particular, we examine the temporal evolution of the spectral response of the electrons and the waves during the 9 October 1990 geomagnetic storm. The observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity, as monitored by the A(E) index and enhanced levels of whistler mode chorus waves. The observed spectral hardening is observed to take place over a range of energies appropriate to the resonant energies associated with Doppler-shifted cyclotron resonance, as supported by the construction of realistic resonance curves and resonant diffusion surfaces. Furthermore, we show that the observed spectral hardening is not consistent with energy-independent radial diffusion models. These results provide strong circumstantial evidence for a local stochastic acceleration mechanism, involving the energisation of a seed population of electrons with energies of the order of a few hundred keV to relativistic energies, driven by wave-particle interactions involving whistler mode chorus. The results suggest that this mechanism contributes to the reformation of the relativistic outer zone population during geomagnetic storms, and is most effective when the recovery phase is characterised by prolonged substorm activity. An additional significant result of this paper is that we demonstrate that the lower energy part of the storm-time electron distribution is in steady-state balance, in accordance with the Kennel and Petschek (1966) theory of limited stably-trapped particle fluxes.

111 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigate the variability in the maximum height of the ionospheric F2-layer, hmF2, with periods of planetary waves (2-30 days), and make an attempt to determine their origin.
Abstract: . The basic aim of this ‘case study’ is to investigate the variability in the maximum height of the ionospheric F2-layer, hmF2, with periods of planetary waves (2–30 days), and to make an attempt to determine their origin. The hourly data of hmF2 above Millstone Hill (42.6° N, 71.5° W) during 01 September 1998 - 31 March 2000 were used for analysis. Three types of disturbances are studied in detail: (i) the 27- day oscillations observed in the hmF2 above Millstone Hill are generated by the geomagnetic activity and by the global-scale 27-day wave present in the zonal mesosphere/lower thermosphere (MLT) neutral wind. The time delay between the 27-day oscillation in the zonal wind and that in the hmF2 is found to be 5–6 days, while between the 27-day oscillation in the geomagnetic activity and that in the hmF2 is found to be 0.8–1 day; (ii) the 16-day oscillation in the hmF2 observed during summer 1999 is probably generated by the global scale 16-day modulation of the semidiurnal tide observed in the MLT region during PSMOS campaign in June–August. We found that if the modulated semidiurnal tide mediates the planetary wave signature in the ionosphere, this planetary wave oscillation has to be best expressed in the amplitude and in the phase of the 12-h periodicity of the ionosphere; and (iii) the third type of disturbances studied is the quasi-2- day activity in the hmF2 that increases during geomagnetic disturbances. The strong pseudo diurnal periodicities generated during the geomagnetic storms can interact between each other and produce the quasi-2-day oscillations in the ionosphere. Key words. Ionosphere (ionosphere-atmosphere interactions; ionosphere-magnetoshpere interactions; wave propagation)

97 citations


Journal ArticleDOI
TL;DR: In this paper, the authors carried out power spectrum, time-spectrum and bispectral analyses of the long-term series of the radiocarbon concentrations deduced from measurements of the radii content in tree rings for the last 8000 years.
Abstract: . We have carried out power spectrum, time-spectrum and bispectrum analyses of the long-term series of the radiocarbon concentrations deduced from measurements of the radiocarbon content in tree rings for the last 8000 years. Classical harmonic analysis of this time series shows a number of periods: 2400, 940, 710, 570, 500, 420, 360, 230, 210 and 190 years. A principle feature of the time series is the long period of ~ 2400 years, which is well known. The lines with periods of 710, 420 and 210 years are found to be the primary secular components of power spectrum. The complicated structure of the observed power spectrum is the result of ~ 2400-year modulation of primary secular components. The modulation induces the appearance of two side lines for every primary one, namely lines with periods of 940 and 570 years, of 500 and 360 years, and 230 and 190 years. The bispectral analysis shows that the parameters of carbon exchange system varied with the ~ 2400-year period during the last 8000 years. Variations of these parameters appear to be a climate effect on the rate of transfer of 14C between the atmosphere and the the ocean. Key words. Meteorology and atmospheric dynamics (climatology; ocean-atmosphere interaction; paleoclimatology)

93 citations


Journal ArticleDOI
TL;DR: In this paper, the aerosol forcing in the presence of clouds and the effect of different surface types (ocean, soil, vegetation, and different combinations of soil and vegetation) are examined based on model simulations, demonstrating that aerosol climate effects change from negative (cooling) to positive (warming) when reflection from below (either due to land or clouds) is high.
Abstract: . It is now clearly understood that atmospheric aerosols have a significant impact on climate due to their important role in modifying the incoming solar and outgoing infrared radiation. The question of whether aerosol cools (negative forcing) or warms (positive forcing) the planet depends on the relative dominance of absorbing aerosols. Recent investigations over the tropical Indian Ocean have shown that, irrespective of the comparatively small percentage contribution in optical depth ( ~ 11%), soot has an important role in the overall radiative forcing. However, when the amount of absorbing aerosols such as soot are significant, aerosol optical depth and chemical composition are not the only determinants of aerosol climate effects, but the altitude of the aerosol layer and the altitude and type of clouds are also important. In this paper, the aerosol forcing in the presence of clouds and the effect of different surface types (ocean, soil, vegetation, and different combinations of soil and vegetation) are examined based on model simulations, demonstrating that aerosol forcing changes sign from negative (cooling) to positive (warming) when reflection from below (either due to land or clouds) is high. Key words. Atmospheric composition and structure (aerosols and particles) History of Geophysics (atmospheric sciences) Hydrology (anthropogenic effects)

82 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared the Global Scale Wave Model (GSWM) and the Canadian Middle Atmosphere Model (CMAM) with six medium frequency radars (MFRs) in the high northern latitudes.
Abstract: . In an earlier paper (Manson et al., 1999a) tidal data (1990–1997) from six Medium Frequency Radars (MFR) were compared with the Global Scale Wave Model (GSWM, original 1995 version). The radars are located between the equator and high northern latitudes: Christmas Island (2° N), Hawaii (22° N), Urbana (40° N), London (43° N), Saskatoon (52° N) and Tromso (70° N). Common harmonic analysis was applied, to ensure consistency of amplitudes and phases in the 75–95 km height range. For the diurnal tide, seasonal agreements between observations and model were excellent while for the semi-diurnal tide the seasonal transitions between clear solstitial states were less well captured by the model. Here the data set is increased by the addition of two locations in the Pacific-North American sector: Yamagawa 31° N, and Wakkanai 45° N. The GSWM model has undergone two additional developments (1998, 2000) to include an improved gravity wave (GW) stress parameterization, background winds from UARS systems and monthly tidal forcing for better characterization of seasonal change. The other model, the Canadian Middle Atmosphere Model (CMAM) which is a General Circulation Model, provides internally generated forcing (due to ozone and water vapour) for the tides. The two GSWM versions show distinct differences, with the 2000 version being either closer to, or further away from, the observations than the original 1995 version. CMAM provides results dependent upon the GW parameterization scheme inserted, but one of the schemes provides very useful tides, especially for the semi-diurnal component. Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)

81 citations


Journal ArticleDOI
TL;DR: In this paper, the mesospheric and lower thermospheric (MLT) winds (60-100 km) obtained by multiple MF radars, located from the arctic to the equator at Tromso (70° N, 19° E), Saskatoon (52° n, 107° W), London (43° N and 81° W, Hawaii (21°N, 157° W) and Christmas Island (2°N and 157°W), respectively, are used to study the planetary-scale 16-day waves.
Abstract: . The mesospheric and lower thermospheric (MLT) winds (60–100 km) obtained by multiple MF radars, located from the arctic to equator at Tromso (70° N, 19° E), Saskatoon (52° N, 107° W), London (43° N, 81° W), Hawaii (21° N, 157° W) and Christmas Island (2° N, 157° W), respectively, are used to study the planetary-scale 16-day waves. Based on the simultaneous observations (1993/1994), the variabilities of the wave amplitudes, periods and phases are derived. At mid- and high-latitude locations the 16-day waves are usually pervasive in the winter-centred seasons (October through March), with the amplitude gradually decreasing with height. From the subtropical location to the equator, the summer wave activities become strong at some particular altitude where the inter-hemisphere wave ducts possibly allow for the leakage of the wave from the other hemispheric winter. The observational results are in good agreement with the theoretical conclusion that, for slowly westward-traveling waves, such as the 16-day wave, vertical propagation is permitted only in an eastward background flow of moderate speed which is present in the winter hemisphere. The wave period also varies with height and time in a range of about 12–24 days. The wave latitudinal differences and the vertical structures are compared with the Global Scale Wave Model (GSWM) for the winter situation. Although their amplitude variations and profiles have a similar tendency, the discrepancies are considerable. For example, the maximum zonal amplitude occurs around 40° N for radar but 30° N for the model. The phase differences between sites due to the latitudinal effect are basically consistent with the model prediction of equatorward phase-propagation. The global 16-day waves at 95 km from the HRDI wind measurements during 1992 through 1995 are also displayed. Again, the wave is a winter dominant phenomenon with strong amplitude around the 40–60° latitude-band on both hemispheres. Key words. Meteorology and atmospheric dynamics – waves and tides – middle atmosphere dynamics – thermospheric dynamics

80 citations


Journal ArticleDOI
TL;DR: In this paper, the relativistic electron response in the outer radiation belt during magnetic storms has been studied in relation to solar wind and geomagnetic parameters during the first six months of 1995, a period in which there were a number of recurrent fast solar wind streams.
Abstract: . The relativistic electron response in the outer radiation belt during magnetic storms has been studied in relation to solar wind and geomagnetic parameters during the first six months of 1995, a period in which there were a number of recurrent fast solar wind streams. The relativistic electron population was measured by instruments on board the two microsatellites, STRV-1a and STRV-1b, which traversed the radiation belt four times per day from L ~ 1 out to L ~ 7 on highly elliptical, near-equatorial orbits. Variations in the E > 750 keV and E > 1 MeV electrons during the main phase and recovery phase of 17 magnetic storms have been compared with the solar wind speed, interplanetary magnetic field z-component, Bz , the solar wind dynamic pressure and Dst *. Three different types of electron responses are identified, with outcomes that strongly depend on the solar wind speed and interplanetary magnetic field orientation during the magnetic storm recovery phase. Observations also confirm that the L-shell, at which the peak enhancement in the electron count rate occurs has a dependence on Dst *. Key words. Magnetospheric physics (energetic particles, trapped; storms and substorms) – Space plasma physics (charged particle motion and accelerations)

70 citations


Journal ArticleDOI
TL;DR: In this paper, three intervals of polar patch formation, as observed by the CUTLASS Finland HF coherent radar, are presented, showing that polar cap patches are formed in response to changes in the orientation of the IMF, especially in the By component.
Abstract: . Three intervals of polar patch formation, as observed by the CUTLASS Finland HF coherent radar, are presented. Simultaneous observations from a vertical ionosonde located at Longyearbyen on Svalbard, situated in the dayside convection throat region, allow for F-region plasma structuring, leading to polar cap patch formation to be determined. Solar wind and interplanetary magnetic field (IMF) precursors of polar patch formation are investigated with MFI and SWE measurements from the Wind spacecraft. We find that in the cases studied polar cap patches are formed in response to changes in the orientation of the IMF, especially in the By component. The resultant changes in the dayside convection pattern alter the source of plasma drifting through the convection throat region into the polar cap. When the convection flow is directed predominantly polewards, high density sub-auroral or mid-latitude plasma enters the polar cap; when flow is directed zonally, low density plasma entrained in the convection return flow replaces it. This mechanism can act to significantly structure the plasma density at sub-auroral or mid-latitudes as well as in the polar cap. In winter months, polar patches appear to be produced by depletions in an otherwise high plasma density tongue of ionisation. In summer months, patches are enhancements of an otherwise low density tongue of ionisation. Key words. Ionosphere (ionospheric irregularities; plasma convection; polar ionosphere)

67 citations


Journal ArticleDOI
TL;DR: In this article, an overall statistical study of night-time enhancements of NmF2 has been carried out, where all available foF2 observations since 1955 at 53 ionosonde stations distributed worldwide in the latitude range f geom = 15° - 60° were used in the analysis.
Abstract: . An overall statistical study of night-time enhancements of NmF2 has been carried out. All available foF2 observations since 1955 at 53 ionosonde stations distributed worldwide in the latitude range f geom = 15° - 60° were used in the analysis. More than 200 000 station-nights of data were analysed. This large data base allowed us to study seasonal, solar cycle and spatial variations of the NmF2 nighttime enhancements. Both pre-midnight and post-midnight NmF2 peaks demonstrate distinct variations with geophysical conditions, indicating different physical mechanisms responsible for their formation. Key words. Ionosphere (mid-latitude ionosphere, ionosphere-magnetosphere interactions) Radio science (ionospheric physics)

Journal ArticleDOI
TL;DR: In this paper, a set of magnetopause crossings observed by Interball-1, Magion-4, and Geotail satellites were used to test seven different models and found that the difference between investigated models is smaller than the error of prediction caused by the factors not included in models.
Abstract: . A number of magnetopause models have been developed in the course of last three decades. We have chosen seven of them and tested them using a fresh set of magnetopause crossings observed by Interball-1, Magion-4, and Geotail satellites. The crossings cover the magnetopause from the subsolar region up to near-Earth tail (XGSE ~ - 20 RE ) and all geomagnetic latitudes. Our study reveals that (1) the difference between investigated models is smaller than the error of prediction caused by the factors not included in models, (2) the dayside magnetopause is indented in the cusp region, (3) the deepness of the indentation can reach ~ 4 RE , and (4) the dimensions of the indentation do not depend on the dipole tilt, whereas its location does. Key words. Magnetopause, magnetospheric physics, solar wind

Journal ArticleDOI
TL;DR: In this paper, the electrodynamic properties of oceanic lightning discharges are compared to those of continental discharges, and the day-to-day variability of negative oceanic discharges exhibits a five-day periodicity, possibly related to planetary waves.
Abstract: . The electrodynamic properties of intense oceanic lightning discharges are compared to intense continental lightning discharges. Particularly intense negative lightning discharges with absolute charge moments > 2 kC · km occur more often over the oceans than over the continents during April 1998. Intense continental lightning discharges, with negative and positive polarity, and intense positive oceanic lightning discharges primarily occur associated with mesoscale convection in the late evening. The number of intense negative oceanic lightning discharges increases in the early morning hours, probably associated with the resurgence of oceanic mesoscale convection in coastal areas. The day-to-day variability of intense negative oceanic lightning discharges exhibits a five day periodicity, possibly related to planetary waves. Key words. Meteorology and atmospheric dynamics (lightning; ocean-atmosphere interactions) – Oceanography - general (marine meteorology)

Journal ArticleDOI
TL;DR: In this paper, the authors present SuperDARN radar observations of the ionospheric flow during a well-observed high-latitude substorm which occurred during steady northward IMF conditions on 2 December 1999.
Abstract: . We present SuperDARN radar observations of the ionospheric flow during a well-observed high-latitude substorm which occurred during steady northward IMF conditions on 2 December 1999. These data clearly demonstrate the excitation of large-scale flow associated with the substorm expansion phase, with enhanced equatorward flows being observed in the pre-midnight local time sector of the expansion phase auroral bulge and westward electrojet, and enhanced return sunward flows being present at local times on either side, extending into the dayside sector. The flow pattern excited was thus of twin-vortex form, with foci located at either end of the substorm auroral bulge, as imaged by the Polar VIS UV imager. Estimated total transpolar voltages were ~40 kV prior to expansion phase onset, grew to ~80 kV over a ~15 min interval during the expansion phase, and then decayed to ~35 kV over ~10 min during recovery. The excitation of the large-scale flow pattern resulted in the development of magnetic disturbances which extended well outside of the region directly disturbed by the substorm, depending upon the change in the flow and the local ionospheric conductivity. It is estimated that the nightside reconnection rate averaged over the 24-min interval of the substorm was ~65– 75 kV, compared with continuing dayside reconnection rates of ~30–45 kV. The net closure of open flux during the sub-storm was thus ~0.4–0.6 × 108 Wb, representing ~15–20% of the open flux present at onset, and corresponding to an overall contraction of the open-closed field line boundary by ~1° latitude. Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; plasma convection)

Journal ArticleDOI
TL;DR: OVATION is useful both for archival purposes and for space weather nowcasting, and the long-running DMSP particle data set, which covers both hemispheres, and has operated since the early 1980s, is chosen as a calibration standard.
Abstract: . The location of the auroral oval and the intensity of the auroral precipitation within it are basic elements in any adequate characterization of the state of the magnetosphere. Yet despite the many ground-based and spacecraft-borne instruments monitoring various aspects of auroral behavior, there are no clear and consistent answers available to those wishing to locate the auroral oval or to quantify its intensity. The purpose of OVATION is to create a tool which does so. OVATION is useful both for archival purposes and for space weather nowcasting. The long-running DMSP particle data set, which covers both hemispheres, and has operated since the early 1980s, and which will continue to operate well into the next decade, is chosen as a calibration standard. Other data sets, including global images from Polar UVI, SuperDARN boundaries, and meridian scanning photometer images, are cross-calibrated to the DMSP standard. Each incorporated instrument has its average offset from the DMSP standard determined as a function of MLT, along with the standard deviations. The various data can, therefore, be combined in a meaningful manner, with the weight attached to a given boundary measurement varying inversely with the variance (square of the standard deviation). OVATION currently spans from December 1983 through the present, including real-time data. Participation of additional experimenters is highly welcomed. The only prerequisites are a willingness to conduct the prescribed cross-calibration procedure, and to make the data available online. The real-time auroral oval location can be found here: http://sd-www.jhuapl.edu/Aurora/ovation live/northdisplay.html. Key words. Magnetospheric physics (auroral phenomena; energetic particles, precipitating; magnetosphere – ionosphere interactions)

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the HRDI (High Resolution Doppler Interferometer-UARS) winds data in 4° latitude by 10° longitude cells at 96 km to obtain global contour maps of solar-tidal amplitudes and phases, and also mean winds.
Abstract: . HRDI (High Resolution Doppler Interferometer-UARS) winds data have been analyzed in 4° latitude by 10° longitude cells at 96 km to obtain global contour maps of solar-tidal amplitudes and phases, and also mean winds. The solstices June–July (1993), December–January (1993–1994), and one equinox September–October (1994) are shown. The 24-h diurnal tide that maximizes near the 20–25° latitude has significant seasonal changes with equinoctial maxima, and very clear longitudinal variability. Maxima are very clear over the oceans. In contrast, the 12-h semi-diurnal tides that maximize near the 40–55° latitude have very strong seasonal changes with winter maxima, and more modest longitudinal changes. The similarities with MLT (mesosphere-lower thermosphere) radar observations (90 km) and the GSWM (Global Scale Wave Model) are very satisfactory. The mean winds are consistent with expectations and show clear poleward flow from summer to winter hemispheres in the solstices. Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides) Radio science (remote sensing)

Journal ArticleDOI
TL;DR: In this article, the authors examined the dependence of solar activity on the F2-layer critical frequency (F2-m) for some ionospheric stations representing low and mid-latitudes for the years 1957 to 1990.
Abstract: . Noontime monthly median values of F2-layer critical frequency foF2 (m) for some ionospheric stations representing low- and mid-latitudes are examined for their dependence on solar activity for the years 1957 (IGY) to 1990. This is the period for which ionospheric data in digital form is available in two CD-ROMs at the World Data Center, Boulder. It is observed that at mid-latitudes, foF2 (m) shows nearly a linear relationship with R12 (the 12-month running average of the Zurich sunspot number), though this relation is nonlinear for low-latitudes. These results indicate some departures from the existing information often used in theoretical and applied areas of space research. Key words. Ionosphere (equatorial ionosphere; mid-latitude ionosphere; modelling and forecasting)

Journal ArticleDOI
TL;DR: In this article, the authors explored the statistical relationship between precipitation, soil moisture and near surface Moist Static Energy (MSE) gradients in West Africa over successive 30-year periods and specifically, the most recent period between 1968-1998.
Abstract: The correlation of 061 found between observed July–September Sahelian rainfall in year 0 and September–November Guinean rainfall in year - 1, led us to explore the statistical relationships between precipitation, soil moisture and near surface Moist Static Energy (MSE) gradients in West Africa These analyses were performed over successive 30-year periods and specifically, the most recent period between 1968–1998 It is shown from observations, National Centers for Environmental Predictions and National Center for Atmospheric Research (NCEP/NCAR) reanalyses and from the Global Soil Wetness Project (GSWP) database, that wet Sahelian rainy seasons are preceded by abnormally wet soils over the Sudan-Guinean belt during northern winter Such moisture anomalies tend to hold during the dry season, then generate increasing MSE gradients just above the continent by March–April These gradients have been shown to be of prime importance for monsoon dynamics and associated rainfall Key words Hydrology (soil moisture) – Meteorology and atmospheric dynamics (climatology)

Journal ArticleDOI
TL;DR: In this paper, the Sodankyla Ion Chemistry model (SIC) has been modified and extended into a detailed ion and neutral chemistry model of the mesosphere, which is used to investigate the effect of the October 1989 solar proton event on odd nitrogen at altitudes between 50-90 km.
Abstract: . Solar proton events and electron precipitation affect the concentrations of middle atmospheric constituents. Ionization caused by precipitating particles enhances the production of important minor neutral constituents, such as nitric oxide, through reaction chains in which ionic reactions play an important role. The Sodankyla Ion Chemistry model (SIC) has been modified and extended into a detailed ion and neutral chemistry model of the mesosphere. Our steady-state model (containing 55 ion species, 8 neutral species, and several hundred chemical reactions) is used to investigate the effect of the October 1989 solar proton event on odd nitrogen at altitudes between 50–90 km. The modelling results show that the NO concentration is significantly enhanced due to the proton precipitation, reaching 107 –108 cm-3 throughout the mesosphere on the 20 October when the proton forcing was most severe. A comparison between the chemical production channels of odd nitrogen indicates that ion chemical reactions are an important factor in the total odd nitrogen production during intense ionization. The modelled electron concentration for the 23 October is compared with EISCAT incoherent scatter radar measurements and a reasonable agreement is found. Key words. Atmospheric composition and structure (Middle atmosphere – composition and chemistry); Ionosphere (Particle precipitation)

Journal ArticleDOI
TL;DR: In this paper, the authors present four-point cluster magnetic field data from a quasi-parallel shock crossing which allows them to probe the three-dimensional structure of this type of shock for the first time.
Abstract: . We present four-point Cluster magnetic field data from a quasi-parallel shock crossing which allows us to probe the three-dimensional structure of this type of shock for the first time. We find that steepened ULF waves typically have a scale larger than the spacecraft separation ( ~ 400–1000 km), while SLAMS-like magnetic field enhancements have different signatures in | B | at the four spacecraft, suggesting that they have a smaller scale size. In the latter case, however, the angular variations of B are similar, consistent with the space-craft making different trajectories through the same structure. The field enhancements have different orientations relative to a model bow shock normal, which might arise from different degrees of deceleration and deflection of the surrounding solar wind plasma. The observed rotation of the magnetic field rising from a direction approximately parallel to the model bow shock normal to a direction more perpendicular to the model normal across the field enhancement is consistent with previously published results. Successive magnetic field enhancements or ULF waves, and the leading and trailing edges of the same structure, are found to have different orientations. Key words. Interplanetary physics (planetary bow shocks)

Journal ArticleDOI
TL;DR: In this paper, radio occultation measurements made with a receiver inside the Earth's atmosphere can be inverted, assuming local spherical symmetry, with an Abel transform to provide an estimate of the atmospheric refractive index profile.
Abstract: . Radio occultation measurements made with a receiver inside the Earth’s atmosphere can be inverted, assuming local spherical symmetry, with an Abel transform to provide an estimate of the atmospheric refractive index profile. The measurement geometry is closely related to problems encountered when inverting seismic time-travel data and solar occultation measurements, where the Abel solution is well known. The method requires measuring both rays that originate from above and below the local horizon of the receiver. The Abel transform operates on a profile of "partial bending angles" found by subtracting the positive elevation measurement from the negative elevation value with the same impact parameter. In principle, the refractive index profile can be derived from measurements with a single frequency GPS receiver because the ionospheric bending is removed when the partial bending angle is evaluated. Key words. Atmospheric composition and structure (pressure, density and temperature) – Radio science (remote sensing)

Journal ArticleDOI
TL;DR: In this paper, the authors investigate plasma and wave disturbances generated by nitrogen gas releases from the cooling system of an IR-camera on board the Vega 1 and Vega 2 spacecraft, during their flybys of comet Halley in March 1986.
Abstract: . We investigate plasma and wave disturbances generated by nitrogen (N2) gas releases from the cooling system of an IR-camera on board the Vega 1 and Vega 2 spacecraft, during their flybys of comet Halley in March 1986. N2 molecules are ionized by solar UV radiation at a rate of ~ 7 · 10 -7 s -1 and give rise to a plasma cloud expanding around the spacecraft. Strong disturbances due to the interaction of the solar wind with the N + 2 ion cloud are observed with a plasma and wave experiment (APV-V instrument). Three gas releases are accompanied by increases in cold electron density and simultaneous decreases of the spacecraft potential; this study shows that the spacecraft potential can be monitored with a reference sensor mounted on a short boom. The comparison between the model and observations suggests that the gas expands as an exhaust plume, and approximately only 1% of the ions can escape the beam within the first meters. The releases are also associated with significant increases in wave electric field emission (8 Hz–300 kHz); this phenomenon lasts for more than one hour after the end of the release, which is most likely due to the temporary contamination of the spacecraft surface by nitrogen gas. DC electric fields associated with the events are complex but interesting. No magnetic field perturbations are detected, suggesting that no significant diamagnetic effect (i.e. magnetic cavity) is associated with these events. Key words. Ionosphere (planetary ionosphere) – Space plasma physics (active perturbation experiments; instruments and techniques)

Journal ArticleDOI
TL;DR: In this article, the authors present magnetospheric observations of very large amplitude global scale ULF waves, from 9 and 10 December 2000 when the upstream solar wind speed exceeded 600 km/s.
Abstract: . We present magnetospheric observations of very large amplitude global scale ULF waves, from 9 and 10 December 2000 when the upstream solar wind speed exceeded 600 km/s. We characterise these ULF waves using ground-based magnetometer, radar and optical instrumentation on both the dawn and dusk flanks; we find evidence to support the hypothesis that discrete frequency field line resonances (FLRs) were being driven by magnetospheric waveguide modes. During the early part of this interval, Cluster was on an outbound pass from the northern dusk side magnetospheric lobe into the magnetosheath, local-time conjugate to the Canadian sector. In situ magnetic fluctuations, observed by Cluster FGM, show evidence of quasi-periodic motion of the magnetosheath boundary layer with the same period as the ULF waves seen on the ground. Our observations represent the first simultaneous magnetometer, radar and optical observations of the characteristics of FLRs, and confirm the potential importance of ULF waves for magnetosphere-ionosphere coupling, particularly via the generation and modulation of electron precipitation into the ionosphere. The in situ Cluster measurements support the hypothesis that, during intervals of fast solar wind speed, the Kelvin-Helmholtz instability (KHI) can excite magnetospheric waveguide modes which bathe the flank magnetosphere with discrete frequency ULF wave power and drive large amplitude FLRs. Paper submitted to the special issue devoted to "Cluster: First scientific results", Ann. Geophysicae, 19, 10/11/12, 2001. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; MHD waves and instabilities; solar wind-magnetosphere interactions)

Journal ArticleDOI
TL;DR: In this article, a torrential precipitation event affected eastern Spain during 21 to 24 October 2000, with values up to 300 mm in a 24-hour period, and the synoptic-scale charts for these days show the presence of a cold cutoff low aloft, south of the Iberian Peninsula, as a part of an W blocking structure over Europe.
Abstract: . A torrential precipitation event affected eastern Spain during 21 to 24 October 2000. Total accumulated rainfall higher than 500 mm was registered at some locations, with values up to 300 mm in a 24-h period. The synoptic-scale charts for these days show the presence of a cold cutoff low aloft, south of the Iberian Peninsula, as a part of an W -blocking structure over Europe. At low levels, persistent easterly winds, established between a dominant anticyclone over eastern Europe and a cyclone over Morocco, are found over the western Mediterranean throughout the entire period. Satellite images show the advance and breaking away of a trough, with an associated cold front, over the Iberian Peninsula, which resulted in the cutoff low formation. Later, scattered convective cells are detected along the eastern Spanish coast during more than 3 days. Numerical simulations reveal that the convective environment was developed by the low-level advection of warm and moist air from central Mediterranean, being charged of moisture by evaporation from the sea. Sensitivity runs confirm that the synoptic-scale persistent low-level easterly flow, and specifically, the presence of a low level jet, was crucial for the subsynoptic processes leading to the long lasting torrential rainfall over the exposed terrains of eastern Spain. The stagnancy of the low-level flow is attributed to the quasi-stationary characteristics of the upper level cutoff low located south of the Iberian Peninsula. Experiments with modified upper-level potential vorticity distributions reveal that slight deviations from the observed configuration result in enhanced mobility of the low-level flow pattern, and thereby a reduction of the precipitation persistence. This suggests the major importance of a correct representation in the model initial conditions of the intensity and location of the upper level features, in order to obtain valuable numerical forecasts of these heavy rainfall events. Key words. Meteorology and atmospheric dynamics (convective processes; mesoscale meteorology; precipitation)

Journal ArticleDOI
TL;DR: In this article, the correlation between cloud-to-ground (CG) lightning and precipitation has been studied by making use of the data from weather radar, meteorological soundings, and a lightning location system that includes three direction finders about 40 km apart from each other in the Pingliang area of east Gansu province in P. R. China.
Abstract: . In this paper, the correlation between cloud-to-ground (CG) lightning and precipitation has been studied by making use of the data from weather radar, meteorological soundings, and a lightning location system that includes three direction finders about 40 km apart from each other in the Pingliang area of east Gansu province in P. R. China. We have studied the convective systems that developed during two cold front processes passing over the observation area, and found that the CG lightning can be an important factor in the precipitation estimation. The regression equation between the average precipitation intensity (R) and the number of CG lightning flashes (L) in the main precipitation period is R = 1.69 ln (L) - 0.27, and the correlation coefficient r is 0.86. The CG lightning flash rate can be used as an indicator of the formation and development of the convective weather system. Another more exhaustive precipitation estimation method has been developed by analyzing the temporal and spatial distributions of the precipitation relative to the location of the CG lightning flashes. Precipitation calculated from the CG lightning flashes is very useful, especially in regions with inadequate radar cover. Key words. Meteorology and atmospheric dynamics (atmospheric electricity; lightning; precipitation)

Journal ArticleDOI
TL;DR: In this paper, the dynamics of interplanetary coronal mass ejections (ICMEs) are discussed from the viewpoint of numerical modeling, and it is demonstrated that the strong interaction of the ICME with the solar wind leads to the velocities being close to each other at 1 AU, despite their having very different speeds near the Sun.
Abstract: . The dynamics of Interplanetary Coronal Mass Ejections (ICMEs) are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength. Key words. Interplanetary physics (interplanetary magnetic fields) Solar physics, astrophysics, and astronomy (flares and mass ejections) Space plasma physics (numerical simulation studies)

Journal ArticleDOI
TL;DR: In this paper, the authors used a neural network model to predict the flux of relativistic (>2 MeV) electrons at geosynchronous orbits during geomagnetic storms.
Abstract: . During the recovery phase of geomagnetic storms, the flux of relativistic (>2 MeV) electrons at geosynchronous orbits is enhanced. This enhancement reaches a level that can cause devastating damage to instruments on satellites. To predict these temporal variations, we have developed neural network models that predict the flux for the period 1–12 h ahead. The electron-flux data obtained during storms, from the Space Environment Monitor on board a Geostationary Meteorological Satellite, were used to construct the model. Various combinations of the input parameters AL, S AL, Dst and S Dst were tested (where S denotes the summation from the time of the minimum Dst). It was found that the model, including S AL as one of the input parameters, can provide some measure of relativistic electron-flux prediction at geosynchronous orbit during the recovery phase. We suggest from this result that the relativistic electron-flux enhancement during the recovery phase is associated with recurring substorms after Dst minimum and their accumulation effect. Key words. Magnetospheric physics (energetic particles, trapped; magnetospheric configuration and dynamics; storms and substorms)

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new method for estimating the contribution from different ionospheric regions to the response of total electron content variations to the solar flare, based on data from the international network of two-frequency multichannel receivers of the navigation GPS system.
Abstract: . This paper proposes a new method for estimating the contribution from different ionospheric regions to the response of total electron content variations to the solar flare, based on data from the international network of two-frequency multichannel receivers of the navigation GPS system. The method uses the effect of partial "shadowing" of the atmosphere by the terrestrial globe. The study of the solar flare influence on the atmosphere uses GPS stations located near the boundary of the shadow on the ground in the nightside hemisphere. The beams between the satellite-borne transmitter and the receiver on the ground for these stations pass partially through the atmosphere lying in the region of total shadow, and partially through the illuminated atmosphere. The analysis of the ionospheric effect of a powerful solar flare of class X5.7/3B that was recorded on 14 July 2000 (10:24 UT, N22 W07) in quiet geomagnetic conditions (Dst = -10 nT) has shown that about 75% of the TEC increase corresponds to the ionospheric region lying below 300 km and about 25% to regions lying above 300 km. Key words. Ionosphere (solar radiation and cosmic ray effects; instruments and techniques) – Solar physics, astrophysics and astronomy (ultraviolet emissions)

Journal ArticleDOI
TL;DR: In this paper, the authors used the Tsyganenko and Stern 1996 model of the magnetospheric magnetic field for the mapping, taking actual solar wind and IMF parameters from the Wind observations.
Abstract: . The width of the cusp region is an indicator of the strength of the merging process and the degree of opening of the magnetosphere. During three years, the Magion-4 satellite, as part of the Interball project, has collected a unique data set of cusp-like plasma observations in middle and high altitudes. For a comparison of high- and low-altitude cusp determination, we map our observations of cusp-like plasma along the magnetic field lines down to the Earth’s surface. We use the Tsyganenko and Stern 1996 model of the magnetospheric magnetic field for the mapping, taking actual solar wind and IMF parameters from the Wind observations. The footprint positions show substantial latitudinal dependence on the dipole tilt angle. We fit this dependence with a linear function and subtract this function from observed cusp position. This process allows us to study both statistical width and location of the inspected region as a function of the solar wind and IMF parameters. Our processing of the Magion-4 measurements shows that high-altitude regions occupied by the cusp-like plasma (cusp and cleft) are projected onto a much broader area (in magnetic local time as well as in a latitude) than that determined in low altitudes. The trends of the shift of the cusp position with changes in the IMF direction established by low-altitude observations have been confirmed. Key words. Magnetospheric physics (magnetopause, cusp and boundary layer; solar wind – magnetosphere interactions)

Journal ArticleDOI
TL;DR: In this article, a simple, semi-quantitative theory of the polarization jet formation and its main characteristics is constructed based on ground-based observations of the subauroral ionosphere.
Abstract: . Recent analysis of the ground-based observations of the Polarization Jet (PJ) effects in the subauroral ionosphere has shown that PJ can rapidly develop in the near-midnight sector near the Harang Discontinuity (HD). Based on these observations, a simple, semi-quantitative theory of the PJ formation and its main characteristics is constructed. According to the model, PJ starts to develop, as proposed by Southwood and Wolf, 1978, due to the penetration of the injected energetic ions to the deeper L-shells in the presence of the westward component of the electric field. The injection near the tip of the HD is assumed here. The initial development stage of the PJ band, considered only qualitatively, is supposed to lead to its inclination inward toward evening with respect to the lines B = const. Within the model proposed, the PJ band, once formed, will be sustained by the continuous charging at its equatorial side, at first, mainly by the newly injected ring current ions, and later by the plasma sheet ions convected inward through the HD. In addition, an important charging of the PJ band occurs at its polar side by energetic electrons drifting eastward. These electrons were either previously on the trapped orbits or convected inward from the plasma sheet, and encounter the PJ polar border. The model semi-quantitatively describes the main features of the PJ events: the typical cross-PJ voltage drop ( ~ 10 kV), the resulting double-sheet current loop feeding the PJ, the recently observed short PJ formation time near midnight ( ~ 10 min or less) accompanied by a fast westward HD displacement, the nearly steady-state PJ location in the evening to midnight MLT sector and width in the ionospheric frame, the bell-shape of the electric field latitude profile, and the long PJ lifetime (up to several hours) - all are in rough accord with observations. Further developments of the model now in progress are briefly described. Key words. Magnetospheric physics (electric fields; magnetosphere-ionosphere interactions; storms and sub-storms)