scispace - formally typeset
Search or ask a question

Showing papers in "Annales Geophysicae in 2010"


Journal ArticleDOI
TL;DR: In this article, the simulated error distribution of radio occultation (RO) electron density profiles (EDPs) from the Abel inversion in a systematic way was reported for the first time.
Abstract: . This letter reports for the first time the simulated error distribution of radio occultation (RO) electron density profiles (EDPs) from the Abel inversion in a systematic way. Occultation events observed by the COSMIC satellites are simulated during the spring equinox of 2008 by calculating the integrated total electron content (TEC) along the COSMIC occultation paths with the "true" electron density from an empirical model. The retrieval errors are computed by comparing the retrieved EDPs with the "true" EDPs. The results show that the retrieved NmF2 and hmF2 are generally in good agreement with the true values, but the reliability of the retrieved electron density degrades in low latitude regions and at low altitudes. Specifically, the Abel retrieval method overestimates electron density to the north and south of the crests of the equatorial ionization anomaly (EIA), and introduces artificial plasma caves underneath the EIA crests. At lower altitudes (E- and F1-regions), it results in three pseudo peaks in daytime electron densities along the magnetic latitude and a pseudo trough in nighttime equatorial electron densities.

192 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the Weather Research and Forecasting (WRF) model to simulate the features associated with a severe thunderstorm observed over Gadanki (13.5° N, 79.2° E), over southeast India, on 21 May 2008 and examined its sensitivity to four different microphysical (MP) schemes (Thompson, Lin, WSM6 and Morrison).
Abstract: . In the present study, we have used the Weather Research and Forecasting (WRF) model to simulate the features associated with a severe thunderstorm observed over Gadanki (13.5° N, 79.2° E), over southeast India, on 21 May 2008 and examined its sensitivity to four different microphysical (MP) schemes (Thompson, Lin, WSM6 and Morrison). We have used the WRF model with three nested domains with the innermost domain of 2 km grid spacing with explicit convection. The model was integrated for 36 h with the GFS initial conditions of 00:00 UTC, 21 May 2008. For validating simulated features of the thunderstorm, we have considered the vertical wind measurements made by the Indian MST radar installed at Gadanki, reflectivity profiles by the Doppler Weather Radar at Chennai, and automatic weather station data at Gadanki. There are major differences in the simulations of the thunderstorm among the MP schemes, in spite of using the same initial and boundary conditions and model configuration. First of all, all the four schemes simulated severe convection over Gadanki almost an hour before the observed storm. The DWR data suggested passage of two convective cores over Gadanki on 21 May, which was simulated by the model in all the four MP schemes. Comparatively, the Thompson scheme simulated the observed features of the updraft/downdraft cores reasonably well. However, all the four schemes underestimated strength and vertical extend of the updraft cores. The MP schemes also showed problems in simulating the downdrafts associated with the storm. While the Thompson scheme simulated surface rainfall distribution closer to observations, the other three schemes overestimated observed rainfall. However, all the four MP schemes simulated the surface wind variations associated with the thunderstorm reasonably well. The model simulated reflectivity profiles were consistent with the observed reflectivity profile, showing two convective cores. These features are consistent with the simulated condensate profiles, which peaked around 5–6 km. As the results are dependent on initial conditions, in simulations with different initial conditions, different schemes may become closer to observations. The present study suggests not only large sensitivity but also variability of the microphysical schemes in the simulations of the thunderstorm. The study also emphasizes the need for a comprehensive observational campaign using multi-observational platforms to improve the parameterization of the cloud microphysics and land surface processes over the Indian region.

184 citations


Journal ArticleDOI
TL;DR: In this article, the impact of agriculture crop residue burning on aerosol properties during October 2006 and 2007 over Punjab State, India using ground-based measurements and multi-satellite data was examined.
Abstract: . The present study deals with the impact of agriculture crop residue burning on aerosol properties during October 2006 and 2007 over Punjab State, India using ground based measurements and multi-satellite data. Spectral aerosol optical depth (AOD) and Angstrom exponent (α) values exhibited larger day to day variation during crop residue burning period. The monthly mean Angstrom exponent "α" and turbidity parameter "β" values during October 2007 were 1.31±0.31 and 0.36±0.21, respectively. The higher values of "α" and "β" suggest turbid atmospheric conditions with increase in fine mode aerosols over the region during crop residue burning period. AURA-OMI derived Aerosol Index (AI) and Nitrogen dioxide (NO2) showed higher values over the study region during October 2007 compared to October 2006 suggesting enhanced atmospheric pollution associated with agriculture crop residue burning.

181 citations


Journal ArticleDOI
TL;DR: In this article, different techniques were used to model the 3D configuration of CMEs in the coronagraph field of view ( up to 15 R-circle dot) and applied these techniques to different CME observed by various coronagraphs.
Abstract: Coronal Mass ejections (CMEs) are enormous eruptions of magnetized plasma expelled from the Sun into the interplanetary space, over the course of hours to days. They can create major disturbances in the interplanetary medium and trigger severe magnetic storms when they collide with the Earth's magnetosphere. It is important to know their real speed, propagation direction and 3-D configuration in order to accurately predict their arrival time at the Earth. Using data from the SECCHI coronagraphs onboard the STEREO mission, which was launched in October 2006, we can infer the propagation direction and the 3-D structure of such events. In this review, we first describe different techniques that were used to model the 3-D configuration of CMEs in the coronagraph field of view ( up to 15 R-circle dot). Then, we apply these techniques to different CMEs observed by various coronagraphs. A comparison of results obtained from the application of different reconstruction algorithms is presented and discussed.

141 citations


Journal ArticleDOI
TL;DR: In this article, the direct aerosol radiative forcing (DARF) has been estimated for the clear-sky conditions over Delhi from January 2006 to January 2007 using Santa Barbara DISORT Atmospheric Radiative Transfer model (SBDART) in the wavelength range 300-3000 nanometer.
Abstract: . The direct aerosol radiative forcing (DARF) has been estimated for the clear-sky conditions over Delhi from January 2006 to January 2007 using Santa Barbara DISORT Atmospheric Radiative Transfer model (SBDART) in the wavelength range 300–3000 nanometer. The single scattering albedo (SSA) and the asymmetry parameter used in this model were estimated using the Optical Properties of Aerosol and Cloud (OPAC) model. The annual average AOD observed at 500 nm was ~0.86±0.42 with an average Angstrom exponent ~0.68±0.35. The average monthly AOD throughout the year over Delhi was found to be in the range 0.56 to 1.22 with the Angstrom exponent in the range 0.38 to 0.96. A high monthly average BC concentration in the range 4–15 μg m−3 led to monthly average SSA in the range 0.90±0.4 to 0.74±0.3 during the year. Consequently, the monthly average clear-sky DARF at the surface was found to vary in the range −46±8 W m−2 to −110±20 W m−2, at TOA in the range −1.4±0.4 to 21±2 W m−2, whereas in the atmosphere it was in the range 46±9 W m−2 to 115±19 W m−2 throughout the year. As the dust concentration in the atmosphere was highest (May–June) the SSA showed an increase with wavelength however when dust concentration was low the SSA decreased with the wavelength.

137 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used data from the Canadian High Arctic Ionospheric Network (CHAIN) to measure amplitude and phase scintillation from L1 GPS signals and total electron content (TEC) from L 1 and L 2 GPS signals.
Abstract: . High-latitude irregularities can impair the operation of GPS-based devices by causing fluctuations of GPS signal amplitude and phase, also known as scintillation. Severe scintillation events lead to losses of phase lock, which result in cycle slips. We have used data from the Canadian High Arctic Ionospheric Network (CHAIN) to measure amplitude and phase scintillation from L1 GPS signals and total electron content (TEC) from L1 and L2 GPS signals to study the relative role that various high-latitude irregularity generation mechanisms have in producing scintillation. In the first year of operation during the current solar minimum the amplitude scintillation has remained very low but events of strong phase scintillation have been observed. We have found, as expected, that auroral arc and substorm intensifications as well as cusp region dynamics are strong sources of phase scintillation and potential cycle slips. In addition, we have found clear seasonal and universal time dependencies of TEC and phase scintillation over the polar cap region. A comparison with radio instruments from the Canadian GeoSpace Monitoring (CGSM) network strongly suggests that the polar cap scintillation and TEC variations are associated with polar cap patches which we therefore infer to be main contributors to scintillation-causing irregularities in the polar cap.

128 citations


Journal ArticleDOI
TL;DR: In this paper, the authors focus on the equatorial plasma bubbles (EPBs) and show that EPBs form regions of depleted plasma along geomagnetic fluxtubes in regions of high occurrence rates.
Abstract: . Based on the multi-year data base (2001–2009) of CHAMP Planar Langmuir Probe (PLP) data and GRACE K-Band Ranging (KBR1B) data, typical features of ionospheric plasma irregularities are studied at the altitudes of CHAMP (300–400 km) and GRACE (~500 km). The phenomena we are focusing on are the equatorial plasma bubbles (EPBs). Similar seasonal/longitudinal (S/L) distributions of EPB have been found at both CHAMP and GRACE altitudes during solar active and quiet years. Peak EPB occurrence rates, defined as number of events within an S/L bin divided by the number of passes over that bin, decrease from the high and moderate solar flux period (2001–2005) to the low solar flux period (2005–2009) from 80% to 60% and 60% to 40% at CHAMP and GRACE altitudes, respectively. On average the occurrence rate increases linearly with solar flux at about the same rate at CHAMP and GRACE. For high flux levels (P10.7>200) non-linear increases are observed at GRACE. The occurrence rate increases rapidly after 19:00 local time (LT) during high solar flux periods. Around solar minimum rates increase more gently and peak around 22:00 LT. The highest occurrence rates are encountered at latitudes around 10° north and south of the dip equator. Results from the two altitudes support the notion that EPBs form regions of depleted plasma along geomagnetic fluxtubes. It is shown for the first time that in regions of high occurrence rates EPBs are associated with fluxtubes reaching greater apex heights than those in regions of low rates.

107 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used spectral information to estimate the fraction of fossil-fuel and non-fossil fuel contributions to absorption coefficient and contributions of soot (Black Carbon), non-soot fine mode aerosols and coarsemode aerosols to AOD.
Abstract: . Absorbing aerosols supplements the global warming caused by greenhouse gases. However, unlike greenhouse gases, the effect of absorbing aerosol on climate is not known with certainty owing to paucity of data. Also, uncertainty exists in quantifying the contributing factors whether it is biomass or fossil fuel burning. Based on the observations of absorption coefficient at seven wavelengths and aerosol optical depth (AOD) at five wavelengths carried out at Gadanki (13.5° N, 79.2° E), a remote village in peninsular India, from April to November 2008, as part of the "Study of Atmospheric Forcing and Responses (SAFAR)" pilot campaign we discuss seasonal variation of black carbon (BC) concentration and aerosol optical depth. Also, using spectral information we estimate the fraction of fossil-fuel and non-fossil fuel contributions to absorption coefficient and contributions of soot (Black Carbon), non-soot fine mode aerosols and coarse mode aerosols to AOD. BC concentration is found to be around 1000 ng/m3 during monsoon months (JJAS) and around 4000 ng/m3 during pre and post monsoon months. Non-fossil fuel sources contribute nearly 20% to absorption coefficient at 880 nm, which increases to 40% during morning and evening hours. Average AOD is found to be 0.38±0.15, with high values in May and low in September. Soot contributes nearly 10% to the AOD. This information is further used to estimate the clear sky aerosol direct radiative forcing. Top of the atmosphere aerosol radiative forcing varies between −4 to 0 W m−2, except for April when the forcing is positive. Surface level radiative forcing is between −10 to −20 W m−2. The net radiation absorbed within the atmosphere is in the range of 9 to 25 W m−2, of which soot contributes about 80 to 90%.

91 citations


Journal ArticleDOI
TL;DR: In this article, the authors applied a ground-based vertically-pointing aerosol lidar to investigate the evolution of the instantaneous atmospheric boundary layer depth, its growth rate, associated entrainment processes, and turbulence characteristics.
Abstract: . We applied a ground-based vertically-pointing aerosol lidar to investigate the evolution of the instantaneous atmospheric boundary layer depth, its growth rate, associated entrainment processes, and turbulence characteristics. We used lidar measurements with range resolution of 3 m and time resolution of up to 0.033 s obtained in the course of a sunny day (26 June 2004) over an urban valley (central Stuttgart, 48°47' N, 9°12' E, 240 m above sea level). The lidar system uses a wavelength of 1064 nm and has a power-aperture product of 2.1 W m2. Three techniques are examined for determining the instantaneous convective boundary layer (CBL) depth from the high-resolution lidar measurements: the logarithm gradient method, the inflection point method, and the Haar wavelet transform method. The Haar wavelet-based approach is found to be the most robust technique for the automated detection of the CBL depth. Two different regimes of the CBL are discussed in detail: a quasi-stationary CBL in the afternoon and a CBL with rapid growth during morning transition in the presence of dust layers atop. Two different growth rates were found: 3–5 m/min for the growing CBL in the morning and 0.5–2 m/min during the quasi-steady regime. The mean entrainment zone thickness for the quasi-steady CBL was found to be ~75 m while the CBL top during the entire day varied between 0.7 km and 2.3 km. A fast Fourier-transform-based spectral analysis of the instantaneous CBL depth time series gave a spectral exponent value of 1.50±0.04, confirming non-stationary CBL behavior in the morning while for the other regime a value of 1.00±0.06 was obtained indicating a quasi-stationary state of the CBL. Assuming that the spatio-temporal variation of the particle backscatter cross-section of the aerosols in the scattering volume is due to number density fluctuations (negligible hygroscopic growth), the particle backscatter coefficient profiles can be used to investigate boundary layer turbulence since the aerosols act as tracers. We demonstrate that with our lidar measurements, vertical profiles of variance, skewness, and kurtosis of the fluctuations of the particle backscatter coefficient can be determined. The variance spectra at different altitudes inside the quasi-steady CBL showed an f−5/3 dependency. The integral scale varied from 40 to 90 s (depending on height), which was significantly larger than the temporal resolution of the lidar data. Thus, the major part of the inertial subrange was detected and turbulent fluctuations could be resolved. For the quasi-stationary case, negative values of skewness were found inside the CBL while positive values were observed in the entrainment zone near the top of the CBL. For the case of the rapidly growing CBL, the skewness profile showed both positive and negative values even inside the CBL.

88 citations


Journal ArticleDOI
TL;DR: A comparison of specific interplanetary condi- tions for 798 magnetic storms with Dst < 50 nT during 1976-2000 was made on the basis of the OMNI archive data.
Abstract: A comparison of specific interplanetary condi- tions for 798 magnetic storms with Dst < 50 nT during 1976-2000 was made on the basis of the OMNI archive data We categorized various large-scale types of solar wind as interplanetary drivers of storms: corotating interaction re- gion (CIR), Sheath, interplanetary CME (ICME) including both magnetic cloud (MC) and Ejecta, separately MC and Ejecta, and "Indeterminate" type The data processing was carried out by the method of double superposed epoch anal- ysis which uses two reference times (onset of storm and min- imum of Dst index) and makes a re-scaling of the main phase of the storm in a such way that all storms have equal dura- tions of the main phase in the new time reference frame This method reproduced some well-known results and allowed us to obtain some new results Specifically, obtained results demonstrate that (1) in accordance with "output/input" cri- teria the highest efficiency in generation of magnetic storms is observed for Sheath and the lowest one for MC, and (2) there are significant differences in the properties of MC and Ejecta and in their efficiencies

87 citations


Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper investigated the relationship between surface solar radiation (SSR) and total cloud cover (TCC) from daily ground-based observational records at 45 pyranometer stations.
Abstract: . This study investigates dimming and brightening of surface solar radiation (SSR) during 1961–2005 in China as well as its relationships to total cloud cover (TCC). This is inferred from daily ground-based observational records at 45 pyranometer stations. A statistical method is introduced to study contributions of changes in the frequency of TCC categories and their atmospheric transparency to the secular SSR trend. The surface records suggest a renewed dimming beyond 2000 in North China after the stabilization in the 1990s; however, a slight brightening appears beyond 2000 in South China. Inter-annual variability of SSR is negatively correlated with that of TCC, but there is a positive correlation between decadal variability of SSR and TCC in most cases. The dimming during 1961–1990 is exclusively attributable to decreased atmospheric transparency, a portion of which is offset by TCC frequency changes in Northeast and Southwest China. The dimming during 1961–1990 in Northwest and Southeast China primarily results from decreased atmospheric transparency under all sky conditions and the percentage of dimming stemming from TCC frequency changes is 11% in Northwest and 2% in Southeast China. Decreased atmospheric transparencies during 1991–2005 in North China in most cases lead to the dimming. TCC frequency changes also contribute to the dimming during this period in North China. This feature is more pronounced in summer and winter when TCC frequency changes can account for more than 80% of dimming. In South China, increased atmospheric transparencies lead to the brightening during 1991–2005. A substantial contribution by TCC frequency changes to the brightening is also evident in spring and autumn.

Journal ArticleDOI
TL;DR: In this paper, the authors measured the correlation between the magnitude of negative Dst and the Bz component of interplanetary magnetic field B and found that the correlation was worse than 0.28 when the product of Bz with the solar wind speed V was considered.
Abstract: . Severe storms (Dst) and Forbush decreases (FD) during cycle 23 showed that maximum negative Dst magnitudes usually occurred almost simultaneously with the maximum negative values of the Bz component of interplanetary magnetic field B, but the maximum magnitudes of negative Dst and Bz were poorly correlated (+0.28). A parameter Bz(CP) was calculated (cumulative partial Bz) as sum of the hourly negative values of Bz from the time of start to the maximum negative value. The correlation of negative Dst maximum with Bz(CP) was higher (+0.59) as compared to that of Dst with Bz alone (+0.28). When the product of Bz with the solar wind speed V (at the hour of negative Bz maximum) was considered, the correlation of negative Dst maximum with VBz was +0.59 and with VBz(CP), 0.71. Thus, including V improved the correlations. However, ground-based Dst values have a considerable contribution from magnetopause currents (several tens of nT, even exceeding 100 nT in very severe storms). When their contribution is subtracted from Dst(nT), the residue Dst* representing true ring current effect is much better correlated with Bz and Bz(CP), but not with VBz or VBz(CP), indicating that these are unimportant parameters and the effect of V is seen only through the solar wind ram pressure causing magnetopause currents. Maximum negative Dst (or Dst*) did not occur at the same hour as maximum FD. The time evolutions of Dst and FD were very different. The correlations were almost zero. Basically, negative Dst (or Dst*) and FDs are uncorrelated, indicating altogether different mechanism.

Journal ArticleDOI
TL;DR: In this article, the authors present all existing systems in Europe and try to identify the main remaining gaps in the air quality forecast knowledge, which remains a weak point of forecast systems.
Abstract: The atmospheric composition is a societal issue and, following new European directives, its forecast is now recommended to quantify the air quality. It concerns both gaseous and particles species, identified as potential problems for health. In Europe, numerical systems providing daily air quality forecasts are numerous and, mostly, operated by universities. Following recent European research projects (GEMS, PROMOTE), an organization of the air quality forecast is currently under development. But for the moment, many platforms exist, each of them with strengths and weaknesses. This overview paper presents all existing systems in Europe and try to identify the main remaining gaps in the air quality forecast knowledge. As modeling systems are now able to reasonably forecast gaseous species, and in a lesser extent aerosols, the future directions would concern the use of these systems with ensemble approaches and satellite data assimilation. If numerous improvements were recently done on emissions and chemistry knowledge, improvements are still needed especially concerning meteorology, which remains a weak point of forecast systems. Future directions will also concern the use of these forecast tools to better understand and quantify the air pollution impact on health.

Journal ArticleDOI
TL;DR: In this article, the 10 years of global ionosphere maps (GIMs) of total electron content (TEC) retrieved at the Jet Propulsion Laboratory (JPL) were used to conduct a statistical study of the time delay of the ionospheric responses to geomagnetic disturbances.
Abstract: . Although positive and negative signatures of ionospheric storms have been reported many times, global characteristics such as the time of occurrence, time delay and duration as well as their relations to the intensity of the ionospheric storms have not received enough attention. The 10 years of global ionosphere maps (GIMs) of total electron content (TEC) retrieved at Jet Propulsion Laboratory (JPL) were used to conduct a statistical study of the time delay of the ionospheric responses to geomagnetic disturbances. Our results show that the time delays between geomagnetic disturbances and TEC responses depend on season, magnetic local time and magnetic latitude. In the summer hemisphere at mid- and high latitudes, the negative storm effects can propagate to the low latitudes at post-midnight to the morning sector with a time delay of 4–7 h. As the earth rotates to the sunlight, negative phase retreats to higher latitudes and starts to extend to the lower latitude toward midnight sector. In the winter hemisphere during the daytime and after sunset at mid- and low latitudes, the negative phase appearance time is delayed from 1–10 h depending on the local time, latitude and storm intensity compared to the same area in the summer hemisphere. The quick response of positive phase can be observed at the auroral area in the night-side of the winter hemisphere. At the low latitudes during the dawn-noon sector, the ionospheric negative phase responses quickly with time delays of 5–7 h in both equinoctial and solsticial months. Our results also manifest that there is a positive correlation between the intensity of geomagnetic disturbances and the time duration of both the positive phase and negative phase. The durations of both negative phase and positive phase have clear latitudinal, seasonal and magnetic local time (MLT) dependence. In the winter hemisphere, long durations for the positive phase are 8–11 h and 12–14 h during the daytime at middle and high latitudes for 20≤Ap

Journal ArticleDOI
TL;DR: In this article, the authors present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which they would expect due to centrifugal acceleration, which is on average outward with an average value of about of 5 m s −2.
Abstract: . Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few R E . The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s −2 . This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 R E geocentric distance is less than 5 km s −1 .

Journal ArticleDOI
TL;DR: In this paper, the average high and low latitude ionosphere-thermosphere response to substorm onsets was deduced based on a large number of substorm events, and the authors presented substorm related observations of the thermosphere derived from the CHAMP satellite.
Abstract: . The input of energy and momentum from the magnetosphere is most efficiently coupled into the high latitude ionosphere-thermosphere. The phenomenon we are focusing on here is the magnetospheric substorm. This paper presents substorm related observations of the thermosphere derived from the CHAMP satellite. With its sensitive accelerometer the satellite can measure the air density and zonal winds. Based on a large number of substorm events the average high and low latitude thermospheric response to substorm onsets was deduced. During magnetic substorms the thermospheric density is enhanced first at high latitudes. Then the disturbance travels at an average speed of 650 m/s to lower latitudes, and 3–4 h later the bulge reaches the equator on the night side. Under the influence of the Coriolis force the travelling atmospheric disturbance (TAD) is deflected westward. In accordance with present-day atmospheric models the disturbance zonal wind velocities during substorms are close to zero near the equator before midnight and attain moderate westward velocities after midnight. In general, the wind system is only weakly perturbed (Δvy

Journal ArticleDOI
TL;DR: In this paper, forces governing the three-dimensional structure of equatorial spread-F (ESF) plumes were examined using the NRL SAMI3/ESF 3D simulation code, where large E×B drifts within the ESF plume placed these crests on field lines with apex heights higher than those of the background IA crests.
Abstract: . Forces governing the three-dimensional structure of equatorial spread-F (ESF) plumes are examined using the NRL SAMI3/ESF three-dimensional simulation code. As is the case with the equatorial ionization anomaly (IA), density crests within the plume occur where gravitational and diffusive forces are in balance. Large E×B drifts within the ESF plume place these crests on field lines with apex heights higher than those of the background IA crests. Large poleward field-aligned ion velocities within the plume result in large ion-neutral diffusive forces that support these ionization crests at altitudes higher than background IA crest altitudes. We show examples in which density enhancements associated with ESF, also called "plasma blobs," can occur within an ESF plume on density-crest field lines, at or above the density crests. Simulated ESF density enhancements reproduce all key features of those that have been observed in situ.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the physical penetration mechanism of the electric field from the Earth's surface, through the atmosphere-ionosphere layers, and until its detection in space by satellites.
Abstract: . It is well known that lithospheric electromagnetic emissions are generated before earthquakes occurrence. In our study, we consider the physical penetration mechanism of the electric field from the Earth's surface, through the atmosphere-ionosphere layers, and until its detection in space by satellites. A simplified approach is investigated using the electric conductivity equation, i.e., ∇ˆσ·∇Φ)=0 in the case of a vertical inclination of the geomagnetic field lines. Particular interest is given to the conductivity profile near the ground and the electric field distribution at the Earth's surface. Our results are discussed and compared to the models of Pulinets et al. (2003) and Denisenko et al. (2008). It is shown that the near ground atmospheric layer with low conductivity decreases the electric field penetration into the ionosphere. The model calculations have demonstrated that the electric field of lithospheric origin is too weak to be observed at satellite altitudes.

Journal ArticleDOI
TL;DR: In this paper, the authors compared the fractional hop whistlers recorded by the ICE experiment onboard the DEMETER satellite with the lightning detected by the EUCLID detection network.
Abstract: . We report a study of penetration of the VLF electromagnetic waves induced by lightning to the ionosphere. We compare the fractional hop whistlers recorded by the ICE experiment onboard the DEMETER satellite with lightning detected by the EUCLID detection network. To identify the fractional hop whistlers, we have developed software for automatic detection of the fractional-hop whistlers in the VLF spectrograms. This software provides the detection times of the fractional hop whistlers and the average amplitudes of these whistlers. Matching the lightning and whistler data, we find the pairs of causative lightning and corresponding whistler. Processing data from ~200 DEMETER passes over the European region we obtain a map of mean amplitudes of whistler electric field as a function of latitudinal and longitudinal difference between the location of the causative lightning and satellite magnetic footprint. We find that mean whistler amplitude monotonically decreases with horizontal distance up to ~1000 km from the lightning source. At larger distances, the mean whistler amplitude usually merges into the background noise and the whistlers become undetectable. The maximum of whistler intensities is shifted from the satellite magnetic footprint ~1° owing to the oblique propagation. The average amplitude of whistlers increases with the lightning current. At nighttime (late evening), the average amplitude of whistlers is about three times higher than during the daytime (late morning) for the same lightning current.

Journal ArticleDOI
TL;DR: In this paper, the accuracy of the GPS instrumental bias estimated using ionospheric condition is related to the receiver's latitude with which ionosphere behaves a little differently for the study of the weak ionosphere disturbance during some special geo-related natural hazards, such as the earthquake and severe meteorological disasters.
Abstract: With one bias estimation method, the latitude-related error distribution of instrumental biases estimated from the GPS observations in Chinese middle and low latitude region in 2004 is analyzed statistically It is found that the error of GPS instrumental biases estimated under the assumption of a quiet ionosphere has an increasing tendency with the latitude decreasing Besides the asymmetrical distribution of the plasmaspheric electron content, the obvious spatial gradient of the ionospheric total electron content (TEC) along the meridional line that related to the Equatorial Ionospheric Anomaly (EIA) is also considered to be responsible for this error increasing The RMS of satellite instrumental biases estimated from mid-latitude GPS observations in 2004 is around 1 TECU (1 TECU = 1016/m2), and the RMS of the receiver's is around 2 TECU Nevertheless, the RMS of satellite instrumental biases estimated from GPS observations near the EIA region is around 2 TECU, and the RMS of the receiver's is around 3–4 TECU The results demonstrate that the accuracy of the instrumental bias estimated using ionospheric condition is related to the receiver's latitude with which ionosphere behaves a little differently For the study of ionospheric morphology using the TEC derived from GPS data, in particular for the study of the weak ionospheric disturbance during some special geo-related natural hazards, such as the earthquake and severe meteorological disasters, the difference in the TEC accuracy over different latitude regions should be paid much attention

Journal ArticleDOI
TL;DR: In this paper, the authors present simultaneous observations of the same chorus elements registered onboard several THEMIS spacecraft in 2007 when all the spacecraft were in the same orbit, which is typical for the outer magnetosphere.
Abstract: . Discrete ELF/VLF chorus emissions, the most intense electromagnetic plasma waves observed in the Earth's radiation belts and outer magnetosphere, are thought to propagate roughly along magnetic field lines from a localized source region near the magnetic equator towards the magnetic poles. THEMIS project Electric Field Instrument (EFI) and Search Coil Magnetometer (SCM) measurements were used to determine the spatial scale of the chorus source localization region on the day side of the Earth's outer magnetosphere. We present simultaneous observations of the same chorus elements registered onboard several THEMIS spacecraft in 2007 when all the spacecraft were in the same orbit. Discrete chorus elements were observed at 0.15–0.25 of the local electron gyrofrequency, which is typical for the outer magnetosphere. We evaluated the Poynting flux and wave vector distribution and obtained chorus wave packet quasi-parallel propagation to the local magnetic field. Amplitude and phase correlation data analysis allowed us to estimate the characteristic spatial correlation scale transverse to the local magnetic field to be in the 2800–3200 km range.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effect of numerical schemes and grids on the inner magnetosphere of the global magnetosphere and concluded that even with a very good solver and the highest affordable grid resolution, the magnetosphere is not grid converged, and further concluded that many numerical effects work nonlinearly to complicate the interpretation of the physics within magnetosphere, and so simulation results should be scrutinized very carefully before a physical interpretation is made.
Abstract: . Magnetohydrodynamic (MHD) models of the global magnetosphere are very good research tools for investigating the topology and dynamics of the near-Earth space environment. While these models have obvious limitations in regions that are not well described by the MHD equations, they can typically be used (or are used) to investigate the majority of magnetosphere. Often, a secondary consideration is overlooked by researchers when utilizing global models – the effects of solving the MHD equations on a grid, instead of analytically. Any discretization unavoidably introduces numerical artifacts that affect the solution to various degrees. This paper investigates some of the consequences of the numerical schemes and grids that are used to solve the MHD equations in the global magnetosphere. Specifically, the University of Michigan's MHD code is used to investigate the role of grid resolution, numerical schemes, limiters, inner magnetospheric density boundary conditions, and the artificial lowering of the speed of light on the strength of the ionospheric cross polar cap potential and the build up of the ring current in the inner magnetosphere. It is concluded that even with a very good solver and the highest affordable grid resolution, the inner magnetosphere is not grid converged. Artificially reducing the speed of light reduces the numerical diffusion that helps to achieve better agreement with data. It is further concluded that many numerical effects work nonlinearly to complicate the interpretation of the physics within the magnetosphere, and so simulation results should be scrutinized very carefully before a physical interpretation of the results is made. Our conclusions are not limited to the Michigan MHD code, but apply to all MHD models due to the limitations of computational resources.

Journal ArticleDOI
TL;DR: In this paper, the spatial distributions of large-scale field-aligned Birkeland currents have been derived using magnetic field data obtained from the Iridium constellation of satellites from February 1999 to December 2007.
Abstract: . The spatial distributions of large-scale field-aligned Birkeland currents have been derived using magnetic field data obtained from the Iridium constellation of satellites from February 1999 to December 2007. From this database, we selected intervals that had at least 45% overlap in the large-scale currents between successive hours. The consistency in the current distributions is taken to indicate stability of the large-scale magnetosphere–ionosphere system to within the spatial and temporal resolution of the Iridium observations. The resulting data set of about 1500 two-hour intervals (4% of the data) was sorted first by the interplanetary magnetic field (IMF) GSM clock angle (arctan(By/Bz)) since this governs the spatial morphology of the currents. The Birkeland current densities were then corrected for variations in EUV-produced ionospheric conductance by normalizing the current densities to those occurring for 0° dipole tilt. To determine the dependence of the currents on other solar wind variables for a given IMF clock angle, the data were then sorted sequentially by the following parameters: the solar wind electric field in the plane normal to the Earth–Sun line, Eyz; the solar wind ram pressure; and the solar wind Alfven Mach number. The solar wind electric field is the dominant factor determining the Birkeland current intensities. The currents shift toward noon and expand equatorward with increasing solar wind electric field. The total current increases by 0.8 MA per mV m−1 increase in Eyz for southward IMF, while for northward IMF it is nearly independent of the electric field, increasing by only 0.1 MA per mV m−1 increase in Eyz. The dependence on solar wind pressure is comparatively modest. After correcting for the solar dynamo dependencies in intensity and distribution, the total current intensity increases with solar wind dynamic pressure by 0.4 MA/nPa for southward IMF. Normalizing the Birkeland current densities to both the median solar wind electric field and dynamic pressure effects, we find no significant dependence of the Birkeland currents on solar wind Alfven Mach number.

Journal ArticleDOI
TL;DR: In this article, two storm events, one moderate storm on 6-7 November 1997 with Dst minimum about −120 nT and one intense storm on 21-23 October 1999 with DST minimum about -250 nT were modeled.
Abstract: . Magnetic field and current system changes in Earth's inner magnetosphere during storm times are studied using two principally different modeling approaches: on one hand, the event-oriented empirical magnetic field model, and, on the other, the Space Weather Modeling Framework (SWMF) built around a global MHD simulation. Two storm events, one moderate storm on 6–7 November 1997 with Dst minimum about −120 nT and one intense storm on 21–23 October 1999 with Dst minimum about −250 nT were modeled. Both modeling approaches predicted a large ring current (first partial, later symmetric) contribution to the magnetic field perturbation for the intense storm. For the moderate storm, the tail current plays a dominant role in the event-oriented model results, while the SWMF results showed no strong tail current in the main phase, which resulted in a poorly timed storm peak relative to the observations. These results imply that the the development of a ring current depends on a strong force to inject the particles deep into the inner magnetosphere, and that the tail current is an important external source for the distortions of the inner magnetospheric magnetic field for both storms. Neither modeling approach was able to reproduce all the variations in the Bx and By components observed at geostationary orbit by GOES satellites during these two storms: the magnetopause current intensifications are inadequate, and the field-aligned currents are not sufficiently represented. While the event-oriented model reproduces rather well the Bz component at geostationary orbit, including the substorm-associated changes, the SWMF field is too dipolar at these locations. The empirical model is a useful tool for validation of the first-principle based models such as the SWMF.

Journal ArticleDOI
TL;DR: In this article, the authors combined conventional and wavelet methods to characterize gravity-waves produced by two intense tropical cyclones in the upper troposphere and lower stratosphere (UT/LS) from GPS winsonde data.
Abstract: Conventional and wavelet methods are combined to characterize gravity-waves (GWs) produced by two intense tropical cyclones (TCs) in the upper troposphere and lower stratosphere (UT/LS) from GPS winsonde data. Analyses reveal large contribution of GWs induced by TCs to wave energy densities in the UT/LS. An increase in total energy density of about 30% of the climatological energy density in austral summer was estimated in the LS above Tromelin during TC Dina. Four distinct periods in GW activity in relation with TC Faxai stages is observed in the UT. Globally, GWs have periods of 6 h-2.5 days, vertical wavelenghts of 1-3 km and horizontal wavelengths \textless1000 km in the UT during the evolution of TCs. Horizontal wavelengths are longer in the LS and about 2200 km during TCs. Convective activity over the basin and GW energy density were modulated by mixed equatorial waves of 3-4 days, 6-8 days and 10-13 days confirmed by Hovmoller diagram, Fourier and wavelet analyses of OLR data. Moreover, location of GW sources is below the tropopause height when TCs are intense otherwise varies at lower tropospheric heights depending on the strength of convection. Finally, the maximum surface wind speeds of TCs Dina and Faxai can be linearly estimated with total energy densities.

Journal ArticleDOI
TL;DR: In this article, a new rainfall estimation method, EPSAT-SG which is a frame for method design, has been carried out to meet the requirement of the AMMA database on a West African domain.
Abstract: This paper presents a new rainfall estimation method, EPSAT-SG which is a frame for method design. The first implementation has been carried out to meet the requirement of the AMMA database on a West African domain. The rainfall estimation relies on two intermediate products: a rainfall probability and a rainfall potential intensity. The first one is computed from MSG/SEVIRI by a feed forward neural network. First evaluation results show better properties than direct precipitation intensity assessment by geostationary satellite infra-red sensors. The second product can be interpreted as a conditional rainfall intensity and, in the described implementation, it is extracted from GPCP-1dd. Various implementation options are discussed and comparison of this embedded product with 3B42 estimates demonstrates the importance of properly managing the temporal discontinuity. The resulting accumulated rainfall field can be presented as a GPCP downscaling. A validation based on ground data supplied by AGRHYMET (Niamey) indicates that the estimation error has been reduced in this process. The described method could be easily adapted to other geographical area and operational environment.

Journal ArticleDOI
TL;DR: In this paper, the authors presented some observations of equatorial coronal hole jets made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007.
Abstract: . Collimated ejections of plasma called "coronal hole jets" are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of "equatorial coronal hole jets" made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km s−1, while the deceleration rate appears to be about 0.11 km s−2, less than solar gravity. The average jet visibility time is about 30 min, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and equatorial coronal hole jets.

Journal ArticleDOI
TL;DR: In this paper, a physically-based technique for interpolating external magnetic field disturbances across large spatial areas can be achieved with the Spherical Elementary Current System (SECS) method using data from ground-based magnetic observatories.
Abstract: . A physically-based technique for interpolating external magnetic field disturbances across large spatial areas can be achieved with the Spherical Elementary Current System (SECS) method using data from ground-based magnetic observatories. The SECS method represents complex electrical current systems as a simple set of equivalent currents placed at a specific height in the ionosphere. The magnetic field recorded at observatories can be used to invert for the electrical currents, which can subsequently be employed to interpolate or extrapolate the magnetic field across a large area. We show that, in addition to the ionospheric currents, inverting for induced subsurface current systems can result in strong improvements to the estimate of the interpolated magnetic field. We investigate the application of the SECS method at mid- to high geomagnetic latitudes using a series of observatory networks to test the performance of the external field interpolation over large distances. We demonstrate that relatively few observatories are required to produce an estimate that is better than either assuming no external field change or interpolation using latitudinal weighting of data from two other observatories.

Journal ArticleDOI
TL;DR: In this paper, the ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h 0 Es, fbEs, and foF2) and they have been shown to be similar to those obtained earlier for Japanese earthquakes.
Abstract: Crustal earthquakes with magnitude 6.0>M 5.5 observed in Italy for the period 1979-2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precur- sors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h 0 Es, fbEs) and foF2 at the ionospheric station Rome. Em- pirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake prepara- tion process. Large lead times for the precursor occurrence (up to 34 days for M=5.8-5.9) tells about a prolong prepara- tion period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.

Journal ArticleDOI
TL;DR: In this article, the location of the poleward auroral luminosity boundary (PALB) from far ultraviolet (FUV) images of the aurora was used as a proxy for the open-closed magnetic field line boundary (OCB).
Abstract: . The open-closed magnetic field line boundary (OCB) delimits the region of open magnetic flux forming the polar cap in the Earth's ionosphere. We present a reliable, automated method for determining the location of the poleward auroral luminosity boundary (PALB) from far ultraviolet (FUV) images of the aurora, which we use as a proxy for the OCB. This technique models latitudinal profiles of auroral luminosity as both a single and double Gaussian function with a quadratic background to produce estimates of the PALB without prior knowledge of the level of auroral activity or of the presence of bifurcation in the auroral oval. We have applied this technique to FUV images recorded by the IMAGE satellite from May 2000 until August 2002 to produce a database of over a million PALB location estimates, which is freely available to download. From this database, we assess and illustrate the accuracy and reliability of this technique during varying geomagnetic conditions. We find that up to 35% of our PALB estimates are made from double Gaussian fits to latitudinal intensity profiles, in preference to single Gaussian fits, in nightside magnetic local time (MLT) sectors. The accuracy of our PALBs as a proxy for the location of the OCB is evaluated by comparison with particle precipitation boundary (PPB) proxies from the DMSP satellites. We demonstrate the value of this technique in estimating the total rate of magnetic reconnection from the time variation of the polar cap area calculated from our OCB estimates.