scispace - formally typeset
Search or ask a question
JournalISSN: 0084-6597

Annual Review of Earth and Planetary Sciences 

Annual Reviews
About: Annual Review of Earth and Planetary Sciences is an academic journal published by Annual Reviews. The journal publishes majorly in the area(s): Subduction & Mantle (geology). It has an ISSN identifier of 0084-6597. Over the lifetime, 934 publications have been published receiving 163855 citations. The journal is also known as: Earth & planetary sciences & Annual reviews : earth & planetary sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the geologic history of the Himalayan-Tibetan orogen suggests that at least 1400 km of north-south shortening has been absorbed by the orogen since the onset of the Indo-Asian collision at about 70 Ma as discussed by the authors.
Abstract: A review of the geologic history of the Himalayan-Tibetan orogen suggests that at least 1400 km of north-south shortening has been absorbed by the orogen since the onset of the Indo-Asian collision at about 70 Ma. Significant crustal shortening, which leads to eventual construction of the Cenozoic Tibetan plateau, began more or less synchronously in the Eocene (50–40 Ma) in the Tethyan Himalaya in the south, and in the Kunlun Shan and the Qilian Shan some 1000–1400 km in the north. The Paleozoic and Mesozoic tectonic histories in the Himalayan-Tibetan orogen exerted a strong control over the Cenozoic strain history and strain distribution. The presence of widespread Triassic flysch complex in the Songpan-Ganzi-Hoh Xil and the Qiangtang terranes can be spatially correlated with Cenozoic volcanism and thrusting in central Tibet. The marked difference in seismic properties of the crust and the upper mantle between southern and central Tibet is a manifestation of both Mesozoic and Cenozoic tectonics. The form...

4,494 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize knowledge of the behavior of elements in the subduction system and highlight the physical and chemical processes that have been invoked as being important in controlling the composition of volcanic arc magmas.
Abstract: Volcanic arc magmas can be defined tectonically as magmas erupting from volcanic edifices above subducting oceanic lithosphere. They form a coherent magma type, characterized compositionally by their enrichment in large ion lithophile (LlL) elements relative to high field strength (HFS) elements. In terms of process, the predominant view is that the vast majority of volcanic arc magmas originate by melting of the underlying mantle wedge, which contains a component of aqueous fluid and/or melt derived from the subducting plate. Recently, opinions have converged over the key aspects of the physical model for magma generation above subduction zones (Davies & Stevenson 1992), namely: 1. that the mantle wedge experiences subduction-induced corner flow (e.g. Spiegelman & MacKenzie 1987); 2. that the subduction component reaches the fusible part of the mantle wedge by the three-stage process of (i) metasomatism of mantle lithosphere, followed by (ii) aqueous fluid release due to breakdown of hydrous minerals at depth (e.g. Wyllie 1983, Tatsumi et al 1983) and (iii) aqueous fluid migration, followed by hydrous melt migration, to the site of melting; 3. that slab-induced flow may be locally reversed beneath the arc itself, allowing mantle decompression to contribute to melt generation (e.g. Ida 1983). The simplified model in Figure 1 highlights the physical and chemical processes that have been invoked as being important in controlling the composition of volcanic arc magmas. Magma compositions (coupled with experimental data on element behavior) can help us gain further understanding of these physical and chemical processes. In this review, we first summarize knowledge of the behavior of elements in the subduction system. We then focus on compositional evidence for the processes illustrated in Figure 1, which we group as follows: 1. derivation of the subduction component, 2. transport of the subduction component to the melting column, 3. depletion and enrichment of the mantle wedge, and 4. processes in the melting column.

2,374 citations

Journal ArticleDOI
TL;DR: The impact of the changing surface ice load upon both Earth's shape and gravitational field, as well as upon sea-level history, have come to be measurable using a variety of geological and geophysical techniques.
Abstract: ▪ Abstract The 100 kyr quasiperiodic variation of continental ice cover, which has been a persistent feature of climate system evolution throughout the most recent 900 kyr of Earth history, has occurred as a consequence of changes in the seasonal insolation regime forced by the influence of gravitational n-body effects in the Solar System on the geometry of Earth's orbit around the Sun. The impacts of the changing surface ice load upon both Earth's shape and gravitational field, as well as upon sea-level history, have come to be measurable using a variety of geological and geophysical techniques. These observations are invertible to obtain useful information on both the internal viscoelastic structure of the solid Earth and on the detailed spatiotemporal characteristics of glaciation history. This review focuses upon the most recent advances that have been achieved in each of these areas, advances that have proven to be central to the construction of the refined model of the global process of glacial isos...

2,333 citations

Journal ArticleDOI
TL;DR: In this article, the isotope fractionations that accompany the evaporation from the ocean and other surface waters and the reverse process of rain formation account for the most notable changes.
Abstract: Changes of the isotopic composition of water within the water cycle provide a recognizable signature, relating such water to the different phases of the cycle. The isotope fractionations that accompany the evaporation from the ocean and other surface waters and the reverse process of rain formation account for the most notable changes. As a result, meteoric waters are depleted in the heavy isotopic species of H and O relative to ocean waters, whereas waters in evaporative systems such as lakes, plants, and soilwaters are relatively enriched. During the passage through the aquifers, the isotope composition of water is essentially a conservative property at ambient temperatures, but at elevated temperatures, interaction with the rock matrix may perturb the isotope composition. These changes of the isotope composition in atmospheric waters, surface water, soil, and groundwaters, as well as in the biosphere, are applied in the characterization of hydrological system as well as indicators of paleo-climatological conditions in proxy materials in climatic archives, such as ice, lake sediments, or organic materials.

2,010 citations

Journal ArticleDOI
TL;DR: In this article, a review of the relationship between friction and the properties of earthquake faults is presented, as well as an interpretation of the friction state variable, including its interpretation as a measure of average asperity contact time and porosity within granular fault gouge.
Abstract: This paper reviews rock friction and the frictional properties of earthquake faults. The basis for rate- and state-dependent friction laws is reviewed. The friction state variable is discussed, including its interpretation as a measure of average asperity contact time and porosity within granular fault gouge. Data are summarized showing that friction evolves even during truly stationary contact, and the connection between modern friction laws and the concept of “static” friction is discussed. Measurements of frictional healing, as evidenced by increasing static friction during quasistationary contact, are reviewed, as are their implications for fault healing. Shear localization in fault gouge is discussed, and the relationship between microstructures and friction is reviewed. These data indicate differences in the behavior of bare rock surfaces as compared to shear within granular fault gouge that can be attributed to dilation within fault gouge. Physical models for the characteristic friction distance are discussed and related to the problem of scaling this parameter to seismic faults. Earthquake afterslip, its relation to laboratory friction data, and the inverse correlation between afterslip and shallow coseismic slip are discussed in the context of a model for afterslip. Recent observations of the absence of afterslip are predicted by the model.

1,714 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202322
202228
202122
202023
201919
201819