scispace - formally typeset
Search or ask a question

Showing papers in "Annual Review of Earth and Planetary Sciences in 2015"


Journal ArticleDOI
TL;DR: The Central Asian Orogenic Belt as discussed by the authors records the accretion and convergence of three collage systems that were finally rotated into two major oroclines, the Mongolia collage system was a long, N-S-oriented composite ribbon that was rotated to its current orientation when the Mongol-Okhotsk orogine was formed.
Abstract: The Central Asian Orogenic Belt records the accretion and convergence of three collage systems that were finally rotated into two major oroclines. The Mongolia collage system was a long, N–S-oriented composite ribbon that was rotated to its current orientation when the Mongol-Okhotsk orocline was formed. The components of the Kazakhstan collage system were welded together into a long, single composite arc that was bent to form the Kazakhstan orocline. The cratons of Tarim and North China were united and sutured by the Beishan orogen, which terminated with formation of the Solonker suture in northern China. All components of the three collage systems were generated by the Neoproterozoic and were amalgamated in the Permo-Triassic. The Central Asian Orogenic Belt evolved by multiple convergence and accretion of many orogenic components during multiple phases of amalgamation, followed by two phases of orocline rotation.

850 citations


Journal ArticleDOI
TL;DR: A comprehensive review of the global monsoon that encompasses findings from studies of both modern monsoons and paleomonsoons can be found in this paper, emphasizing the direct drive of seasonal pressure system changes on monsoon circulation and depicting the intensity in terms of both circulation and precipitation.
Abstract: This article provides a comprehensive review of the global monsoon that encompasses findings from studies of both modern monsoons and paleomonsoons. We introduce a definition for the global monsoon that incorporates its three-dimensional distribution and ultimate causes, emphasizing the direct drive of seasonal pressure system changes on monsoon circulation and depicting the intensity in terms of both circulation and precipitation. We explore the global monsoon climate changes across a wide range of timescales from tectonic to intraseasonal. Common features of the global monsoon are global homogeneity, regional diversity, seasonality, quasi-periodicity, irregularity, instability, and asynchroneity. We emphasize the importance of solar insolation, Earth orbital parameters, underlying surface properties, and land-air-sea interactions for global monsoon dynamics. We discuss the primary driving force of monsoon variability on each timescale and the relationships among dynamics on multiple timescales. Natural ...

360 citations


Journal ArticleDOI
TL;DR: Continental magmatic arcs form above subduction zones where the upper plate is continental lithosphere and/or accreted transitional lithosphere, and are Earth's largest sites of intermediate magmatism.
Abstract: Continental magmatic arcs form above subduction zones where the upper plate is continental lithosphere and/or accreted transitional lithosphere. The best-studied examples are found along the western margin of the Americas. They are Earth's largest sites of intermediate magmatism. They are long lived (tens to hundreds of millions of years) and spatially complex; their location migrates laterally due to a host of tectonic causes. Episodes of crustal and lithospheric thickening alternating with periods of root foundering produce cyclic vertical changes in arcs. The average plutonic and volcanic rocks in these arcs straddle the compositional boundary between an andesite and a dacite, very similar to that of continental crust; about half of that comes from newly added mafic material from the mantle. Arc products of the upper crust differentiated from deep crustal (>40 km) residual materials, which are unstable in the lithosphere. Continental arcs evolve into stable continental masses over time; trace elemental budgets, however, present challenges to the concept that Phanerozoic arcs are the main factories of continental crust.

334 citations


Journal ArticleDOI
TL;DR: In this article, current knowledge of the production, stocks, and fluxes of PyC as well as the physical and chemical processes through which it interacts as a dynamic component of the global carbon cycle is synthesized.
Abstract: Pyrogenic carbon (PyC; includes soot, char, black carbon, and biochar) is produced by the incomplete combustion of organic matter accompanying biomass burning and fossil fuel consumption. PyC is pervasive in the environment, distributed throughout the atmosphere as well as soils, sediments, and water in both the marine and terrestrial environment. The physicochemical characteristics of PyC are complex and highly variable, dependent on the organic precursor and the conditions of formation. A component of PyC is highly recalcitrant and persists in the environment for millennia. However, it is now clear that a significant proportion of PyC undergoes transformation, translocation, and remineralization by a range of biotic and abiotic processes on comparatively short timescales. Here we synthesize current knowledge of the production, stocks, and fluxes of PyC as well as the physical and chemical processes through which it interacts as a dynamic component of the global carbon cycle.

311 citations


Journal ArticleDOI
TL;DR: In this article, the deep-time δ34S record of marine sulfates and sulfides is reviewed in light of recent advances in understanding the sulfur biogeochemical cycle.
Abstract: The sulfur biogeochemical cycle integrates the metabolic activity of multiple microbial pathways (e.g., sulfate reduction, disproportionation, and sulfide oxidation) along with abiotic reactions and geological processes that cycle sulfur through various reservoirs. The sulfur cycle impacts the global carbon cycle and climate primarily through the remineralization of organic carbon. Over geological timescales, cycling of sulfur is closely tied to the redox state of Earth's exosphere through the burial of oxidized (sulfate) and reduced (sulfide) sulfur species in marine sediments. Biological sulfur cycling is associated with isotopic fractionations that can be used to trace the fluxes through various metabolic pathways. The resulting isotopic data provide insights into sulfur cycling in both modern and ancient environments via isotopic signatures in sedimentary sulfate and sulfide phases. Here, we review the deep-time δ34S record of marine sulfates and sulfides in light of recent advances in understanding h...

292 citations


Journal ArticleDOI
TL;DR: The composition of Earth's lower continental crust is enigmatic and the available heat-flow and wavespeed constraints can be satisfied if lower continental continental crust elsewhere contains anywhere from 49 to 62 wt% SiO2.
Abstract: The composition of much of Earth’s lower continental crust is enigmatic. Wavespeeds require that 10–20% of the lower third is mafic, but the available heat-flow and wavespeed constraints can be satisfied if lower continental crust elsewhere contains anywhere from 49 to 62 wt% SiO2. Thus, contrary to common belief, the lower crust in many regions could be relatively felsic, with SiO2 contents similar to andesites and dacites. Most lower crust is less dense than the underlying mantle, but mafic lowermost crust could be unstable and likely delaminates beneath rifts and arcs. During sediment subduction, subduction erosion, arc subduction, and continent subduction, mafic rocks become eclogites and may continue to descend into the mantle, whereas more silica-rich rocks are transformed into felsic gneisses that are less dense than peridotite but more dense than continental upper crust. These more felsic rocks may rise buoyantly, undergo decompression melting and melt extraction, and be relaminated to the base of the crust. As a result of this refining and differentiation process, such relatively felsic rocks could form much of Earth’s lower crust.

251 citations


Journal ArticleDOI
TL;DR: In this article, the authors developed kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip.
Abstract: Understanding the partitioning of seismic and aseismic fault slip is central to seismotectonics as it ultimately determines the seismic potential of faults. Thanks to advances in tectonic geodesy, it is now possible to develop kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip. Studies of subduction zones and continental faults have shown that aseismic creep is common and sometimes prevalent within the seismogenic depth range. Interseismic coupling is generally observed to be spatially heterogeneous, defining locked patches of stress accumulation, to be released in future earthquakes or aseismic transients, surrounded by creeping areas. Clay-rich tectonites, high temperature, and elevated pore-fluid pressure seem to be key factors promoting aseismic creep. The generally logarithmic time evolution of afterslip is a distinctive feature of creeping faults that suggests a logarithmic dependency of fault friction on slip rate...

238 citations


Journal ArticleDOI
TL;DR: How the discipline has already provided insights about biotic responses to key environmental stressors is described and methodological advances in geohistorical analysis that will foster the next major breakthroughs in conservation outcomes are identified.
Abstract: Humans now play a major role in altering Earth and its biota. Finding ways to ameliorate human impacts on biodiversity and to sustain and restore the ecosystem services on which we depend is a grand scientific and societal challenge. Conservation paleobiology is an emerging discipline that uses geohistorical data to meet these challenges by developing and testing models of how biota respond to environmental stressors. Here we (a) describe how the discipline has already provided insights about biotic responses to key environmental stressors, (b) outline research aimed at disentangling the effects of multiple stressors, (c) provide examples of deliverables for managers and policy makers, and (d) identify methodological advances in geohistorical analysis that will foster the next major breakthroughs in conservation outcomes. We highlight cases for which exclusive reliance on observations of living biota may lead researchers to erroneous conclusions about the nature and magnitude of biotic change, vulnerabili...

181 citations


Journal ArticleDOI
TL;DR: The characterization of exoplanetary atmospheres has come of age in the past decade, as astronomical techniques now allow for albedos, chemical abundances, temperature profiles and maps, rotation periods, and even wind speeds to be measured as discussed by the authors.
Abstract: The characterization of exoplanetary atmospheres has come of age in the past decade, as astronomical techniques now allow for albedos, chemical abundances, temperature profiles and maps, rotation periods, and even wind speeds to be measured Atmospheric dynamics sets the background state of density, temperature, and velocity that determines or influences the spectral and temporal appearance of an exoplanetary atmosphere Hot exoplanets are most amenable to these characterization techniques In this review, we focus on highly irradiated, large exoplanets (the hot Jupiters), as astronomical data begin to confront theoretical questions We summarize the basic atmospheric quantities inferred from the astronomical observations We review the state of the art by addressing a series of current questions, and look toward the future by considering a separate set of exploratory questions Attaining the next level of understanding requires a concerted effort of constructing multifaceted, multiwavelength datasets for benchmark objects Understanding clouds presents a formidable obstacle, as they introduce degeneracies into the interpretation of spectra, yet their properties and existence are directly influenced by atmospheric dynamics Confronting general circulation models with these multifaceted, multiwavelength datasets will help us understand these and other degeneracies

175 citations


Journal ArticleDOI
TL;DR: In this article, the authors review data and recent research on arc composition, focusing on the relatively complete arc crustal sections in the Jurassic Talkeetna arc (south central Alaska) and the Cretaceous Kohistan arc (northwest Pakistan), together with seismic data on the lower crust and uppermost mantle.
Abstract: We review data and recent research on arc composition, focusing on the relatively complete arc crustal sections in the Jurassic Talkeetna arc (south central Alaska) and the Cretaceous Kohistan arc (northwest Pakistan), together with seismic data on the lower crust and uppermost mantle. Whereas primitive arc lavas are dominantly basaltic, the Kohistan crust is clearly andesitic and the Talkeetna crust could be andesitic. The andesitic compositions of the two arc sections are within the range of estimates for the major element composition of continental crust. Calculated seismic sections for Kohistan and Talkeetna provide a close match for the thicker parts of the active Izu arc, suggesting that it, too, could have an andesitic bulk composition. Because andesitic crust is buoyant with respect to the underlying mantle, much of this material represents a net addition to continental crust. Production of bulk crust from a parental melt in equilibrium with mantle olivine or pyroxene requires processing of igneou...

172 citations


Journal ArticleDOI
TL;DR: Paleosols are ancient soils that have been incorporated into the geological record as discussed by the authors, and they provide information about pedogenic processes and local paleoenvironments, including morphology, classification, and clay mineralogy.
Abstract: Paleosols are ancient soils that have been incorporated into the geological record. Soils form in response to interactions among the lithosphere, hydrosphere, biosphere, and atmosphere, so paleosols potentially record physical, biological, and chemical information about past conditions near Earth's surface. As a result, paleosols are an important resource for terrestrial environmental and climatic reconstructions. Long-standing paleosol research topics include morphology, classification, and clay mineralogy, all of which provide information about pedogenic processes and local paleoenvironments. Paleosols are also used to infer processes involved in the development of stratigraphic architecture and basin evolution. Recent paleosol research has introduced semiquantitative and quantitative measures for environmental and chronometric reconstructions that provide insight into major regional to global changes in temperature, precipitation, and atmospheric pCO2. These new proxies focus on morphological and chemi...

Journal ArticleDOI
TL;DR: In Africa, these relationships have been influenced by a combination of highlatitude ice distributions, sea surface temperatures, and low-latitude orbital forcing that resulted in large oscillations in vegetation and moisture availability that were modulated by local basin dynamics as mentioned in this paper.
Abstract: Evaluating the relationships between climate, the environment, and human traits is a key part of human origins research because changes in Earth's atmosphere, oceans, landscapes, and ecosystems over the past 10 Myr shaped the selection pressures experienced by early humans. In Africa, these relationships have been influenced by a combination of high-latitude ice distributions, sea surface temperatures, and low-latitude orbital forcing that resulted in large oscillations in vegetation and moisture availability that were modulated by local basin dynamics. The importance of both climate and tectonics in shaping African landscapes means that integrated views of the ecological, environmental, and tectonic histories of a region are necessary in order to understand the relationships between climate and human evolution.

Journal ArticleDOI
TL;DR: For the Thwaites Glacier, West Antarctica, the threshold may already have been exceeded, although rapid change may be delayed by centuries, and the reduced state will likely involve loss of most of the West Antarctic Ice Sheet, causing >3 m of sea-level rise as mentioned in this paper.
Abstract: Ocean-ice interactions have exerted primary control on the Antarctic Ice Sheet and parts of the Greenland Ice Sheet, and will continue to do so in the near future, especially through melting of ice shelves and calving cliffs. Retreat in response to increasing marine melting typically exhibits threshold behavior, with little change for forcing below the threshold but a rapid, possibly delayed shift to a reduced state once the threshold is exceeded. For Thwaites Glacier, West Antarctica, the threshold may already have been exceeded, although rapid change may be delayed by centuries, and the reduced state will likely involve loss of most of the West Antarctic Ice Sheet, causing >3 m of sea-level rise. Because of shortcomings in physical understanding and available data, uncertainty persists about this threshold and the subsequent rate of change. Although sea-level histories and physical understanding allow the possibility that ice-sheet response could be quite fast, no strong constraints are yet available on...

Journal ArticleDOI
TL;DR: Jadeitite is a relatively rare, very tough rock composed predominantly of jadeite and typically found associated with tectonic blocks of high-pressure/low-temperature metabasaltic rocks (e.g., eclogite, blueschist) in exhumed serpentinite-matrix melanges as discussed by the authors.
Abstract: Jadeitite is a relatively rare, very tough rock composed predominantly of jadeite and typically found associated with tectonic blocks of high-pressure/low-temperature metabasaltic rocks (e.g., eclogite, blueschist) in exhumed serpentinite-matrix melanges. Studies over the past ∼20 years have interpreted jadeitite either as the direct hydrous fluid precipitate from subduction channel dewatering into the overlying mantle wedge or as the metasomatic replacement by such fluids of oceanic plagiogranite, graywacke, or metabasite along the channel margin. Thus, jadeitites directly sample and record fluid transport in the subduction factory and provide a window into this geochemical process that is critical to a major process in the Earth system. They record the remarkable transport of large ion lithophile elements, such as Li, Ba, Sr, and Pb, as well as elements generally considered more refractory, such as U, Th, Zr, and Hf. Jadeitite is also the precious form of jade, utilized since antiquity in the form of to...

Journal ArticleDOI
TL;DR: In this paper, the authors show that grain boundary sliding is a key process that results in a broad absorption band, as indicated by seismic observations, and they predict a smooth transition from elastic behavior through an anelastic regime toward viscous behavior, consistent with experimental observations.
Abstract: Energy dissipation due to intrinsic attenuation occurs at elevated temperatures in rocks as a result of a range of processes. Examples where small-strain, transient deformation occurs are seismic waves, tidal deformation, and at longer timescales post-glacial rebound and far-field post-seismic deformation. Experiments at mantle temperatures and seismic frequencies show that grain boundary sliding is a key process that results in a broad absorption band, as indicated by seismic observations. Models of grain boundary sliding predict a smooth transition from elastic behavior through an anelastic regime toward viscous (Maxwell) behavior, consistent with experimental observations. Other mechanisms that may contribute to dissipation in Earth, at least locally, are dislocations and melt. Extrapolation of the laboratory data shows that first-order observations of planetary behavior and structure can be explained by the effects of temperature and pressure on transient creep properties, but that locally, additional...

Journal ArticleDOI
Feng Tian1
TL;DR: A review of recent studies related to atmospheric escape from exoplanets can be found in this paper, where the most important conclusions are that atmospheric escape can significantly influence the volatile contents of low-mass ex-planets and the atmosphere and climate evolution histories of terrestrial planets.
Abstract: It has been known for decades that atmospheric escape is important for the evolution of terrestrial planets in the Solar System, although exactly how atmospheric escape changes the atmospheres of these bodies is still hotly debated. Rapidly increasing numbers of exoplanet observations provide new targets against which atmospheric escape models are tested. In this review we summarize recent studies related to atmospheric escape from exoplanets. The most important conclusions are that (a) escape can significantly influence the volatile contents of low-mass exoplanets (with mass lower than those of Uranus and Neptune) and the atmosphere and climate evolution histories of Solar System terrestrial planets; (b) models including detailed physics and chemistry in planetary upper atmospheres will be important for the interpretation of existing and future observations of exoplanets; and (c) fluid models considering 2D or 3D planetary upper atmospheres and particle models for planetary exospheres will be important n...

Journal ArticleDOI
TL;DR: In this paper, the authors combine a synoptic global compilation of planktic foraminifera with a stochastic null model of taxonomic turnover to identify statistically significant increases in macroevolutionary rates.
Abstract: Planktic foraminifera are an abundant component of deep-sea sediment and are critical to geohistorical research, primarily because as a biological and geochemical system they are sensitive to coupled bio-hydro-lithosphere interactions. They are also well sampled and studied throughout their evolutionary history. Here, we combine a synoptic global compilation of planktic foraminifera with a stochastic null model of taxonomic turnover to identify statistically significant increases in macroevolutionary rates. There are three taxonomic diversifications and two distinct extinctions in the history of the group. The well-known Cretaceous–Paleogene extinction is of unprecedented magnitude and abruptness and is linked to rapid environmental perturbations associated with bolide impact. The Eocene–Oligocene boundary extinction occurs due to a combination of factors related to a major reorganization of the global climate system. Changes in ocean stratification, seawater chemistry, and global climate recur as primary...

Journal ArticleDOI
TL;DR: In this article, the authors focus on plate motion changes and quantify the forcing associated with these processes, including evolving plate boundary forces and pressure-driven flow within the asthenosphere that link plate velocity variations explicitly to changes in dynamic topography.
Abstract: Past and current plate motions are increasingly well mapped from high-temporal-resolution paleomagnetic and geodetic studies, revealing rapid variations that occur on short timescales relative to the time it takes for the large-scale structure associated with mantle buoyancy to evolve. The rates of change of plate velocities hold key information on the geodynamic, tectonic, and Earth's surface processes that may have caused them. Rapid plate motion changes thus provide us with a unique opportunity to quantify the forcing associated with these processes. Important mechanisms capable of inducing such rapid changes include evolving plate boundary forces, for example, those associated with slab sinking or orogeny along convergent margins, as well as temporal variations in pressure-driven flow within the asthenosphere that link plate velocity variations explicitly to changes in dynamic topography. Here, we focus on (a) findings from recent kinematic observations and (b) the quantitative framework that allows t...

Journal ArticleDOI
TL;DR: In a recent conversation with professor Dianne Newman, Caltech geobiologist, James “Jim” J. Morgan as mentioned in this paper recalled his early days in Ireland and New York City, education in parochial and public schools, and introduction to science in Cardinal Hayes High School, Bronx.
Abstract: In conversation with professor Dianne Newman, Caltech geobiologist, James “Jim” J. Morgan recalls his early days in Ireland and New York City, education in parochial and public schools, and introduction to science in Cardinal Hayes High School, Bronx. In 1950, Jim entered Manhattan College, where he elected study of civil engineering, in particular water quality. Donald O'Connor motivated Jim's future study of O2 in rivers at Michigan, where in his MS work he learned to model O2 dynamics of rivers. As an engineering instructor at Illinois, Jim worked on rivers polluted by synthetic detergents. He chose to focus on chemical studies, seeing it as crucial for the environment. Jim enrolled for PhD studies with Werner Stumm at Harvard, who mentored his research in chemistry of particle coagulation and oxidation processes of Mn(II) and (IV). In succeeding decades, until retirement in 2000, Jim's teaching and research centered on aquatic chemistry; major themes comprised rates of abiotic manganese oxidation on p...