scispace - formally typeset
Search or ask a question

Showing papers in "Annual Review of Immunology in 2003"


Journal ArticleDOI
TL;DR: This unit discusses mammalian Toll receptors (TLR1‐10) that have an essential role in the innate immune recognition of microorganisms and are discussed are TLR‐mediated signaling pathways and antibodies that are available to detect specific TLRs.
Abstract: The innate immune system in drosophila and mammals senses the invasion of microorganisms using the family of Toll receptors, stimulation of which initiates a range of host defense mechanisms. In drosophila antimicrobial responses rely on two signaling pathways: the Toll pathway and the IMD pathway. In mammals there are at least 10 members of the Toll-like receptor (TLR) family that recognize specific components conserved among microorganisms. Activation of the TLRs leads not only to the induction of inflammatory responses but also to the development of antigen-specific adaptive immunity. The TLR-induced inflammatory response is dependent on a common signaling pathway that is mediated by the adaptor molecule MyD88. However, there is evidence for additional pathways that mediate TLR ligand-specific biological responses.

5,915 citations


Journal ArticleDOI
TL;DR: It is suggested that several clinical situations, including autoimmunity and certain infectious diseases, can be influenced by the antigen-specific tolerogenic role of DCs.
Abstract: Dendritic cells (DCs) have several functions in innate and adaptive immunity. In addition, there is increasing evidence that DCs in situ induce antigen-specific unresponsiveness or tolerance in central lymphoid organs and in the periphery. In the thymus DCs generate tolerance by deleting self-reactive T cells. In peripheral lymphoid organs DCs also induce tolerance to antigens captured by receptors that mediate efficient uptake of proteins and dying cells. Uptake by these receptors leads to the constitutive presentation of antigens on major histocompatibility complex (MHC) class I and II products. In the steady state the targeting of DC antigen capture receptors with low doses of antigens leads to deletion of the corresponding T cells and unresponsiveness to antigenic rechallenge with strong adjuvants. In contrast, if a stimulus for DC maturation is coadministered with the antigen, the mice develop immunity, including interferon-gamma-secreting effector T cells and memory T cells. There is also new evidence that DCs can contribute to the expansion and differentiation of T cells that regulate or suppress other immune T cells. One possibility is that distinct developmental stages and subsets of DCs and T cells can account for the different pathways to peripheral tolerance, such as deletion or suppression. We suggest that several clinical situations, including autoimmunity and certain infectious diseases, can be influenced by the antigen-specific tolerogenic role of DCs.

3,082 citations


Journal ArticleDOI
TL;DR: This review summarizes the current understanding of the host immune response, with emphasis on the roles of macrophages, T cells, and the cytokine/chemokine network in engendering protective immunity.
Abstract: The resurgence of tuberculosis worldwide has intensified research efforts directed at examining the host defense and pathogenic mechanisms operative in Mycobacterium tuberculosis infection. This review summarizes our current understanding of the host immune response, with emphasis on the roles of macrophages, T cells, and the cytokine/chemokine network in engendering protective immunity. Specifically, we summarize studies addressing the ability of the organism to survive within macrophages by controlling phagolysosome fusion. The recent studies on Toll-like receptors and the impact on the innate response to M. tuberculosis are discussed. We also focus on the induction, specificity, and effector functions of CD4(+) and CD8(+) T cells, and the roles of cytokines and chemokines in the induction and effector functions of the immune response. Presentation of mycobacterial antigens by MHC class I, class II, and CD1 as well as the implications of these molecules sampling various compartments of the cell for presentation to T cells are discussed. Increased attention to this disease and the integration of animal models and human studies have afforded us a greater understanding of tuberculosis and the steps necessary to combat this infection. The pace of this research must be maintained if we are to realize an effective vaccine in the next decades.

2,080 citations


Journal ArticleDOI
TL;DR: The current state of the field regarding the natural ligands and molecular factors required for positive and negative selection are summarized and a model for how these disparate outcomes can be signaled via the same receptor is discussed.
Abstract: A functional immune system requires the selection of T lymphocytes expressing receptors that are major histocompatibility complex restricted but tolerant to self-antigens. This selection occurs predominantly in the thymus, where lymphocyte precursors first assemble a surface receptor. In this review we summarize the current state of the field regarding the natural ligands and molecular factors required for positive and negative selection and discuss a model for how these disparate outcomes can be signaled via the same receptor. We also discuss emerging data on the selection of regulatory T cells. Such cells require a high-affinity interaction with self-antigens, yet differentiate into regulatory cells instead of being eliminated.

1,592 citations


Journal ArticleDOI
TL;DR: T cell anergy is a tolerance mechanism in which the lymphocyte is intrinsically functionally inactivated following an antigen encounter, but remains alive for an extended period of time in a hyporesponsive state as discussed by the authors.
Abstract: T cell anergy is a tolerance mechanism in which the lymphocyte is intrinsically functionally inactivated following an antigen encounter, but remains alive for an extended period of time in a hyporesponsive state. Models of T cell anergy affecting both CD4(+) and CD8(+) cells fall into two broad categories. One, clonal anergy, is principally a growth arrest state, whereas the other, adaptive tolerance or in vivo anergy, represents a more generalized inhibition of proliferation and effector functions. The former arises from incomplete T cell activation, is mostly observed in previously activated T cells, is maintained by a block in the Ras/MAP kinase pathway, can be reversed by IL-2 or anti-OX40 signaling, and usually does not result in the inhibition of effector functions. The latter is most often initiated in naive T cells in vivo by stimulation in an environment deficient in costimulation or high in coinhibition. Adaptive tolerance can be induced in the thymus or in the periphery. The cells proliferate and differentiate to varying degrees and then downregulate both functions in the face of persistent antigen. The state involves an early block in tyrosine kinase activation, which predominantly inhibits calcium mobilization, and an independent mechanism that blocks signaling through the IL-2 receptor. Adaptive tolerance reverses in the absence of antigen. Aspects of both of the anergic states are found in regulatory T cells, possibly preventing them from dominating initial immune responses to foreign antigens and shutting down such responses prematurely.

1,340 citations


Journal ArticleDOI
Marc Daëron1
TL;DR: In this paper, a review of membrane Fc receptors (FcR) of the immunoglobulin superfamily is presented, focusing on the mechanisms by which FcR trigger and regulate biological responses of cells on which they are expressed.
Abstract: ▪ Abstract This review deals with membrane Fc receptors (FcR) of the immunoglobulin superfamily. It is focused on the mechanisms by which FcR trigger and regulate biological responses of cells on which they are expressed. FcR deliver signals when they are aggregated at the cell surface. The aggregation of FcR having immunoreceptor tyrosine-based activation motifs (ITAMs) activates sequentially src family tyrosine kinases and syk family tyrosine kinases that connect transduced signals to common activation pathways shared with other receptors. FcR with ITAMs elicit cell activation, endocytosis, and phagocytosis. The nature of responses depends primarily on the cell type. The aggregation of FcR without ITAM does not trigger cell activation. Most of these FcR internalize their ligands, which can be endocytosed, phagocytosed, or transcytosed. The fate of internalized receptor-ligand complexes depends on defined sequences in the intracytoplasmic domain of the receptors. The coaggregation of different FcR result...

1,331 citations


Journal ArticleDOI
TL;DR: Recent rapid advances in understanding the biological nature of hematopoietic stem and progenitor cells have broadened the potential application of these cells in the treatment of diseases.
Abstract: Stem cell biology is scientifically, clinically, and politically a current topic. The hematopoietic stem cell, the common ancestor of all types of blood cells, is one of the best-characterized stem cells in the body and the only stem cell that is clinically applied in the treatment of diseases such as breast cancer, leukemias, and congenital immunodeficiencies. Multicolor cell sorting enables the purification not only of hematopoietic stem cells, but also of their downstream progenitors such as common lymphoid progenitors and common myeloid progenitors. Recent genetic approaches including gene chip technology have been used to elucidate the gene expression profile of hematopoietic stem cells and other progenitors. Although the mechanisms that control self-renewal and lineage commitment of hematopoietic stem cells are still ambiguous, recent rapid advances in understanding the biological nature of hematopoietic stem and progenitor cells have broadened the potential application of these cells in the treatment of diseases.

1,059 citations


Journal ArticleDOI
TL;DR: The mechanisms that control lineage commitment to the Th1 phenotype are discussed, and the basic pathways leading to Th1 differentiation can now be understood in in vitro and a number of infection and disease models.
Abstract: The T helper lymphocyte is responsible for orchestrating the appropriate immune response to a wide variety of pathogens. The recognition of the polarized T helper cell subsets Th1 and Th2 has led to an understanding of the role of these cells in coordinating a variety of immune responses, both in responses to pathogens and in autoimmune and allergic disease. Here, we discuss the mechanisms that control lineage commitment to the Th1 phenotype. What has recently emerged is a rich understanding of the cytokines, receptors, signal transduction pathways, and transcription factors involved in Th1 differentiation. Although the picture is still incomplete, the basic pathways leading to Th1 differentiation can now be understood in in vitro and a number of infection and disease models.

1,018 citations


Journal ArticleDOI
TL;DR: The Fas/FasL system is responsible for activation-induced cell death but also plays an important role in lymphocyte-mediated killing under certain circumstances, and oversuppression of these pathways may also lead to increased viral susceptibility and/or decreased tumor cell killing.
Abstract: Virtually all of the measurable cell-mediated cytotoxicity delivered by cytotoxic T lymphocytes and natural killer cells comes from either the granule exocytosis pathway or the Fas pathway. The granule exocytosis pathway utilizes perforin to traffic the granzymes to appropriate locations in target cells, where they cleave critical substrates that initiate DNA fragmentation and apoptosis; granzymes A and B induce death via alternate, nonoverlapping pathways. The Fas/FasL system is responsible for activation-induced cell death but also plays an important role in lymphocyte-mediated killing under certain circumstances. The interplay between these two cytotoxic systems provides opportunities for therapeutic interventions to control autoimmune diseases and graft vs. host disease, but oversuppression of these pathways may also lead to increased viral susceptibility and/or decreased tumor cell killing.

1,018 citations


Journal ArticleDOI
TL;DR: IL-13 was revealed as a potent mediator of tissue fibrosis in both schistosomiasis and asthma, which indicates that it is a key regulator of the extracellular matrix.
Abstract: IL-13 was first recognized for its effects on B cells and monocytes, where it upregulated class II expression, promoted IgE class switching and inhibited inflammatory cytokine production. It was also thought to be functionally redundant with IL-4. However, studies conducted with knockout mice, neutralizing antibodies, and novel antagonists demonstrate that IL-13 possesses several unique effector functions that distinguish it from IL-4. Resistance to most gastrointestinal nematodes is mediated by type-2 cytokine responses, in which IL-13 plays a dominant role. By regulating cell-mediated immunity, IL-13 modulates resistance to intracellular organisms including Leishmania major, Leishmania mexicana, and Listeria monocytogenes. In the lung, IL-13 is the central mediator of allergic asthma, where it regulates eosinophilic inflammation, mucus secretion, and airway hyperresponsiveness. Manipulation of IL-13 effector function may also prove useful in the treatment of some cancers like B-cell chronic lymphocytic leukemia and Hodgkin's disease, where IL-13 modulates apoptosis or tumor cell growth. IL-13 can also inhibit tumor immunosurveillance. As such, inhibitors of IL-13 might be effective as cancer immunotherapeutics by boosting type-1-associated anti-tumor defenses. Finally, IL-13 was revealed as a potent mediator of tissue fibrosis in both schistosomiasis and asthma, which indicates that it is a key regulator of the extracellular matrix. The mechanisms that regulate IL-13 production and/or function have also been investigated, and IL-4, IL-12, IL-18, IFN-gamma, IL-10, TGF-beta, TNF-alpha, and the IL-4/IL-13 receptor complex play important roles. This review highlights the effector functions of IL-13 and describes multiple pathways for modulating its activity in vivo.

953 citations


Journal ArticleDOI
TL;DR: The BAFF system provides not only potential insight into the development of autoreactive B cells but a relatively simple paradigm to begin considering the balancing act between survival, growth, and death that affects all cells.
Abstract: BAFF, a member of the TNF family, is a fundamental survival factor for transitional and mature B cells. BAFF overexpression leads to an expanded B cell compartment and autoimmunity in mice, and elevated amounts of BAFF can be found in the serum of autoimmune patients. APRIL is a related factor that shares receptors with BAFF yet appears to play a different biological role. The BAFF system provides not only potential insight into the development of autoreactive B cells but a relatively simple paradigm to begin considering the balancing act between survival, growth, and death that affects all cells.

Journal ArticleDOI
TL;DR: This review focuses on the regulation of the immune response via the neuroendocrine system and the effects of interruptions of this regulatory loop at multiple levels in predisposition and expression of immune diseases and on mechanisms of glucocorticoid effects on immune cells and molecules.
Abstract: A reciprocal regulation exists between the central nervous and immune systems through which the CNS signals the immune system via hormonal and neuronal pathways and the immune system signals the CNS through cytokines. The primary hormonal pathway by which the CNS regulates the immune system is the hypothalamic-pituitary-adrenal axis, through the hormones of the neuroendocrine stress response. The sympathetic nervous system regulates the function of the immune system primarily via adrenergic neurotransmitters released through neuronal routes. Neuroendocrine regulation of immune function is essential for survival during stress or infection and to modulate immune responses in inflammatory disease. Glucocorticoids are the main effector end point of this neuroendocrine system and, through the glucocorticoid receptor, have multiple effects on immune cells and molecules. This review focuses on the regulation of the immune response via the neuroendocrine system. Particular details are presented on the effects of interruptions of this regulatory loop at multiple levels in predisposition and expression of immune diseases and on mechanisms of glucocorticoid effects on immune cells and molecules.

Journal ArticleDOI
TL;DR: In this paper, the factors controlling the formation and survival of memory T cells are reviewed and a review of the most common factors for the formation of long-lived memory cells is presented.
Abstract: Typical immune responses lead to prominent clonal expansion of antigen-specific T and B cells followed by differentiation into effector cells. Most effector cells die at the end of the immune response but some of these cells survive and form long-lived memory cells. The factors controlling the formation and survival of memory T cells are reviewed.

Journal ArticleDOI
TL;DR: A model is emerging in which CD45 affects cellular responses by controlling the relative threshold of sensitivity to external stimuli, and recent advances suggest that modulation of CD45 function can have therapeutic benefit in many disease states.
Abstract: Regulation of tyrosine phosphorylation is a critical control point for integration of environmental signals into cellular responses. This regulation is mediated by the reciprocal actions of protein tyrosine kinases and phosphatases. CD45, the first and prototypic receptor-like protein tyrosine phosphatase, is expressed on all nucleated hematopoietic cells and plays a central role in this process. Studies of CD45 mutant cell lines, CD45-deficient mice, and CD45-deficient humans initially demonstrated the essential role of CD45 in antigen receptor signal transduction and lymphocyte development. It is now known that CD45 also modulates signals emanating from integrin and cytokine receptors. Recent work has focused on regulation of CD45 expression and alternative splicing, isoform-specific differences in signal transduction, and regulation of phosphatase activity. From these studies, a model is emerging in which CD45 affects cellular responses by controlling the relative threshold of sensitivity to external stimuli. Perturbation of this function may contribute to autoimmunity, immunodeficiency, and malignancy. Moreover, recent advances suggest that modulation of CD45 function can have therapeutic benefit in many disease states.

Journal ArticleDOI
TL;DR: Upon recognition of the infectious agent, MBL and the ficolins initiate the lectin pathway of complement activation through attached serine proteases (MASPs), whereas SP-A and SP-D rely on other effector mechanisms: direct opsonization, neutralization, and agglutination to limit the infection and concurrently orchestrates the subsequent adaptive immune response.
Abstract: Collectins and ficolins, present in plasma and on mucosal surfaces, are humoral molecules of the innate immune systems, which recognize pathogen-associated molecular patterns. The human collectins, mannan-binding lectin (MBL) and surfactant protein A and D (SP-A and SP-D), are oligomeric proteins composed of carbohydrate-recognition domains (CRDs) attached to collagenous regions and are thus structurally similar to the ficolins, L-ficolin, M-ficolin, and H-ficolin. However, they make use of different CRD structures: C-type lectin domains for the collectins and fibrinogen-like domains for the ficolins. Upon recognition of the infectious agent, MBL and the ficolins initiate the lectin pathway of complement activation through attached serine proteases (MASPs), whereas SP-A and SP-D rely on other effector mechanisms: direct opsonization, neutralization, and agglutination. This limits the infection and concurrently orchestrates the subsequent adaptive immune response. Deficiencies of the proteins may predispose to infections or other complications, e.g., reperfusion injuries or autoimmune diseases. Structure, function, clinical implications, and phylogeny are reviewed.

Journal ArticleDOI
TL;DR: To elude immune surveillance, tumors must develop mechanisms that block the elaboration and sensing of proinflammatory danger signals, thereby shifting the balance from activation to tolerance induction.
Abstract: Given the vast number of genetic and epigenetic changes associated with carcinogenesis, it is clear that tumors express many neoantigens. A central question in cancer immunology is whether recognition of tumor antigens by the immune system leads to activation (i.e., surveillance) or tolerance. Paradoxically, while strong evidence exists that specific immune surveillance systems operate at early stages of tumorigenesis, established tumors primarily induce immune tolerance. A unifying hypothesis posits that the fundamental processes of cancer progression, namely tissue invasion and metastasis, are inherently proinflammatory and thus activating for innate and adaptive antitumor immunity. To elude immune surveillance, tumors must develop mechanisms that block the elaboration and sensing of proinflammatory danger signals, thereby shifting the balance from activation to tolerance induction. Elucidation of these mechanisms provides new strategies for cancer immunotherapy.

Journal ArticleDOI
TL;DR: In this article, it was shown that only 5 to 10% of immunocompetent humans are susceptible to tuberculosis, and over 85% of them develop the disease exclusively in the lungs.
Abstract: ▪ Abstract Only 5 to 10% of immunocompetent humans are susceptible to tuberculosis, and over 85% of them develop the disease exclusively in the lungs. Human immunodeficiency virus (HIV)-infected humans, in contrast, can develop systemic disease that is more quickly lethal. This is in keeping with other evidence showing that susceptible humans generate some level of Th1 immunity to Mycobacterium tuberculosis (Mtb) infection. Tuberculosis in mice is also exclusively a lung disease that is progressive and lethal, in spite of the generation of Th1-mediated immunity. Thus mouse tuberculosis is a model of tuberculosis in susceptible humans, as is tuberculosis in guinea pigs and rabbits. Inability to resolve infection and prevent disease may not be a consequence of the generation of an inadequate number of Th1 cells but of an intrinsic deficiency in macrophage function that prevents these cells from expressing immunity. If this proves to be true, vaccinating susceptible humans against tuberculosis will be a diff...

Journal ArticleDOI
TL;DR: Successful identification of a specific ligand, alpha-galactosylceramide(alpha-GalCer), and the establishment of gene-manipulated mice with selective loss of Valpha14 NKT cells helped elucidate the remarkable functional diversity of Valphal14 N KT cells in various immune responses such as host defense by mediating anti-nonself innate immune reaction, homeostatic regulation of anti-self responses, and antitumor immunity.
Abstract: A novel lymphocyte lineage, Valpha14 natural killer T (NKT) cells, is now well established as distinct from conventional alphabeta T cells. Valpha14 NKT cells express a single invariant Valpha14 antigen receptor that is essential for their development. Successful identification of a specific ligand, alpha-galactosylceramide(alpha-GalCer), and the establishment of gene-manipulated mice with selective loss of Valpha14 NKT cells helped elucidate the remarkable functional diversity of Valpha14 NKT cells in various immune responses such as host defense by mediating anti-nonself innate immune reaction, homeostatic regulation of anti-self responses, and antitumor immunity.

Journal ArticleDOI
TL;DR: Because of their anti-inflammatory nature, many of these poxvirus proteins hold promise as potential therapeutic agents for acute or chronic inflammatory conditions.
Abstract: Large DNA viruses defend against hostile assault executed by the host immune system by producing an array of gene products that systematically sabotage key components of the inflammatory response. Poxviruses target many of the primary mediators of innate immunity including interferons, tumor necrosis factors, interleukins, complement, and chemokines. Poxviruses also manipulate a variety of intracellular signal transduction pathways such as the apoptotic response. Many of the poxvirus genes that disrupt these pathways have been hijacked directly from the host immune system, while others have demonstrated no clear resemblance to any known host genes. Nonetheless, the immunological targets and the diversity of strategies used by poxviruses to disrupt these host pathways have provided important insights into diverse aspects of immunology, virology, and inflammation. Furthermore, because of their anti-inflammatory nature, many of these poxvirus proteins hold promise as potential therapeutic agents for acute or chronic inflammatory conditions.

Journal ArticleDOI
TL;DR: A model of HIV-1 pathogenesis is presented in which the protracted loss of CD4(+) T cells results from early viral destruction of selected memory Tcell populations, followed by a combination of profound increases in overall memory T cell turnover, damage to the thymus and other lymphoid tissues, and physiological limitations in peripheral CD4 (+) T cell renewal.
Abstract: In the absence of antiretroviral treatment, HIV-1 establishes a chronic, progressive infection of the human immune system that invariably, over the course of years, leads to its destruction and fatal immunodeficiency. Paradoxically, while viral replication is extensive throughout the course of infection, deterioration of conventional measures of immunity is slow, including the characteristic loss of CD4(+) T cells that is thought to play a key role in the development of immunodeficiency. This conundrum suggests that CD4(+) T cell-directed viral cytopathicity alone cannot explain the course of disease. Indeed, recent advances now indicate that HIV-1 pathogenesis is likely to result from a complex interplay between the virus and the immune system, particularly the mechanisms responsible for T cell homeostasis and regeneration. We review these data and present a model of HIV-1 pathogenesis in which the protracted loss of CD4(+) T cells results from early viral destruction of selected memory T cell populations, followed by a combination of profound increases in overall memory T cell turnover, damage to the thymus and other lymphoid tissues, and physiological limitations in peripheral CD4(+) T cell renewal.

Journal ArticleDOI
TL;DR: Structural and binding studies provide the necessary framework for exploring how these molecular interactions initiate T cell activation.
Abstract: Over the past decade, key protein interactions contributing to T cell antigen recognition have been characterized in molecular detail. These have included interactions involving the T cell antigen receptor (TCR) itself, its coreceptors CD4 and CD8, the accessory molecule CD2, and the costimulatory receptors CD28 and CTLA-4. A clear view is emerging of how these molecules interact with their ligands at the cell-cell interface. Structural and binding studies have confirmed that the proteins span small but comparable distances and that, overall, they interact very weakly. However, there have been important surprises as well: that TCR interactions with peptide-MHC are topologically constrained and characterized by considerable conformational flexibility at the binding interface; that coreceptors engage peptide-MHC with extraordinarily fast kinetics and at angles apparently precluding direct interactions with the TCR bound to the same peptide-MHC; that the structural mechanisms allowing recognition by costimulatory and accessory molecules to be weak and yet specific are very heterogeneous; and that because of differences in both binding affinity and stoichiometry, there is enormous variation in the stability of the various costimulatory receptor/ligand complexes. These studies provide the necessary framework for exploring how these molecular interactions initiate T cell activation.

Journal ArticleDOI
TL;DR: Research into the molecular basis of the spatial segregation and organization of signaling receptors provided by rafts is adding fundamentally to the understanding of the initiation and prolongation of signals in the immune system.
Abstract: The cells of both the adaptive and innate immune systems express a dizzying array of receptors that transduce and integrate an enormous amount of information about the environment that allows the cells to mount effective immune responses. Over the past several years, significant advances have been made in elucidating the molecular details of signal cascades initiated by the engagement of immune cell receptors by their ligands. Recent evidence indicates that immune receptors and components of their signaling cascades are spatially organized and that this spatial organization plays a central role in the initiation and regulation of signaling. A key organizing element for signaling receptors appears to be cholesterol- and sphingolipid-rich plasma membrane microdomains termed lipid rafts. Research into the molecular basis of the spatial segregation and organization of signaling receptors provided by rafts is adding fundamentally to our understanding of the initiation and prolongation of signals in the immune system.

Journal ArticleDOI
TL;DR: The FcalphaRI alpha chain lacks canonical signal transduction domains but can associate with the FcR gamma chain that bears an activation motif (ITAM) in the cytoplasmic domain, allowing activatory functions.
Abstract: The IgA receptor family comprises a number of surface receptors including the polymeric Ig receptor involved in epithelial transport of IgA/IgM, the myeloid specific IgA Fc receptor (FcalphaRI or CD89), the Fcalpha/muR, and at least two alternative IgA receptors. These are the asialoglycoprotein receptor and the transferrin receptor, which have been implicated in IgA catabolism, and tissue IgA deposition. In this review we focus on the biology of FcalphaRI (CD89). FcalphaRI is expressed on neutrophils, eosinophils, monocytes/macrophages, dendritic cells, and Kupffer cells. This receptor represents a heterogeneously glycosylated transmembrane protein that binds both IgA subclasses with low affinity. A single gene encoding FcalphaRI has been isolated, which is located within the leukocyte receptor cluster on chromosome 19. The FcalphaRI alpha chain lacks canonical signal transduction domains but can associate with the FcR gamma-chain that bears an activation motif (ITAM) in the cytoplasmic domain, allowing activatory functions. FcalphaRI expressed alone mediates endocytosis and recyling of IgA. No FcalphaRI homologue has been defined in the mouse, and progress in defining the in vivo role of FcalphaRI has been made using human FcalphaRI transgenic (Tg) mice. FcalphaRI-Tg mice demonstrated FcalphaRI expression on Kupffer cells and so defined a key role for the receptor in mucosal defense. The receptor functions as a second line of antibacterial defense involving serum IgA rather than secretory IgA. Studies in FcalphaRI-Tg mice, furthermore, defined an essential role for soluble FcalphaRI in the development of IgA nephropathy by formation of circulating IgA-FcalphaRI complexes. Finally, recent work points out a role for human IgA in treatment of infectious and neoplastic diseases.

Journal ArticleDOI
TL;DR: Progress is described in some of the major murine models of CD8 T cell-mediated immunity to viral, bacterial, and protozoal infection and the intricate relationship between microbially induced innate inflammatory responses and the kinetics, magnitude, and character of long-term T cell responses is described.
Abstract: CD8 T cells respond to viral infections but also participate in defense against bacterial and protozoal infections. In the last few years, as new methods to accurately quantify and characterize pathogen-specific CD8 T cells have become available, our understanding of in vivo T cell responses has increased dramatically. Pathogen-specific T cells, once thought to be quite rare following infection, are now known to be present at very high frequencies, particularly in peripheral, nonlymphoid tissues. With the ability to visualize in vivo CD8 T cell responses has come the recognition that T cell expansion is programmed and, to a great extent, independent of antigen concentrations. Comparison of CD8 T cell responses to different pathogens also highlights the intricate relationship between microbially induced innate inflammatory responses and the kinetics, magnitude, and character of long-term T cell responses. This review describes recent progress in some of the major murine models of CD8 T cell-mediated immunity to viral, bacterial, and protozoal infection.

Journal ArticleDOI
TL;DR: The role of the Bcl-2 protein family and to a lesser extent that of death receptors (members of the tumor necrosis factor receptor family with a death domain) in the control of lymphoid and myeloid cell survival is described.
Abstract: Apoptotic cell death plays a critical role in the development and functioning of the immune system. During differentiation, apoptosis weeds out lymphocytes lacking useful antigen receptors and those expressing dangerous ones. Lymphocyte death is also involved in limiting the magnitude and duration of immune responses to infection. In this review, we describe the role of the Bcl-2 protein family, and to a lesser extent that of death receptors (members of the tumor necrosis factor receptor family with a death domain), in the control of lymphoid and myeloid cell survival. We also consider the pathogenic consequences of failure of apoptosis in the immune system.

Journal ArticleDOI
TL;DR: This review addresses the ability of antigens to select out and drive B cell clones from the normal state to overt leukemic cells by binding to BCRs that are relatively unique and characteristic of B-CLL cells.
Abstract: B cell chronic lymphocytic leukemia (B-CLL) is an accumulative disease of slowly proliferating CD5(+) B lymphocytes that develops in the aging population. Whereas some patients with B-CLL have an indolent course and die after many years from unrelated causes, others progress very rapidly and succumb within a few years from this currently incurable leukemia. Over the past decade studies of the structure and function of the B cell antigen receptor (BCR) used by these leukemic cells have helped redefine the nature of this disease. In this review we summarize and reinterpret several aspects of these BCR-related studies and how they might relate to the disease. In particular, we address the ability of antigens to select out and drive B cell clones from the normal state to overt leukemic cells by binding to BCRs that are relatively unique and characteristic of B-CLL cells. The differential capacity of some B-CLL cases to continue to transduce signals through the BCR during the leukemic phase and the consequences for the in vivo biology of the leukemic clone is also considered. Finally, we discuss current and emerging views of the cellular origin of B-CLL cells and the differentiation pathways down which we believe these cells progress.

Journal ArticleDOI
TL;DR: The factors affecting T cell viability vary depending on the type and status of the T cell involved, and the control of CD8+ and CD4+ memory T cells is controlled in different ways.
Abstract: The factors affecting T cell viability vary depending on the type and status of the T cell involved. Naive T cells die via a Bcl-2/Bim dependent route. Their deaths are prevented in animals by IL-7 and contact with MHC. Activated T cells die in many different ways. Among these is a pathway involving signals that come from outside the T cell and affect it via surface receptors such as Fas. Activated T cells also die through a pathway driven by signals generated within the T cell itself, a cell autonomous route. This pathway involves members of the Bcl-2 family, in particular Bcl-2, Bcl-xl, Bim, and probably Bak. The viability of CD8+ and CD4+ memory T cells is controlled in different ways. CD8+ memory T cells are maintained by IL-15 and IL-7. The control of CD4+ memory T cells is more mysterious, with roles reported for IL-7 and/or contact via the TCR.

Journal ArticleDOI
TL;DR: The plasmacytic development of germinal center B cells is irreversible by repressing BCL-6 and PAX5 as mentioned in this paper, which are required for germinally center B-1 and marginal zone B cells, respectively.
Abstract: Plasma cells are terminally differentiated final effectors of the humoral immune response. Plasma cells that result from antigen activation of B-1 and marginal zone B cells provide the first, rapid response to antigen. Plasma cells that develop after a germinal center reaction provide higher-affinity antibody and often survive many months in the bone marrow. Transcription factors Bcl-6 and Pax5, which are required for germinal center B cells, block plasmacytic differentiation and repress Blimp-1 and XBP-1, respectively. When Bcl-6-dependent repression of Blimp-1 is relieved, Blimp-1 ensures that plasmacytic development is irreversible by repressing BCL-6 and PAX5. In plasma cells, Blimp-1, XBP-1, IRF4, and other regulators cause cessation of cell cycle, decrease signaling from the B cell receptor and communication with T cells, inhibit isotype switching and somatic hypermutation, downregulate CXCR5, and induce copious immunoglobulin synthesis and secretion. Thus, commitment to plasmacytic differentiation involves inhibition of activities associated with earlier B cell developmental stages as well as expression of the plasma cell phenotype.

Journal ArticleDOI
TL;DR: This review summarizes the general parameters of cell- and antibody-mediated immune protection and the basic mechanisms responsible for what the authors call immunological memory and the various successes and difficulties of vaccines are evaluated with respect to the role of antigen.
Abstract: This review summarizes the general parameters of cell- and antibody-mediated immune protection and the basic mechanisms responsible for what we call immunological memory. From this basis, the various successes and difficulties of vaccines are evaluated with respect to the role of antigen in maintaining protective immunity. Based on the fact that in humans during the first 12-48 months maternal antibodies from milk and serum protect against classical acute childhood and other infections, the concept is developed that maternal antibodies attenuate most infections of babies and infants and turn them into effective vaccines. If this "natural vaccination" under passive protective conditions does not occur, acute childhood diseases may be severe, unless infants are actively vaccinated with conventional vaccines early enough, i.e., in synchronization with the immune system's maturation. Although vaccines are available against the classical childhood diseases, they are not available for many seemingly milder childhood infections such as gastrointestinal and respiratory infections; these may eventually trigger immunopathological diseases. These changing balances between humans and infections caused by changes in nursing habits but also in hygiene levels may well be involved in changing disease patterns including increased frequencies of certain autoimmune and degenerative diseases.

Journal ArticleDOI
TL;DR: The current understanding of E3 Ub ligases in both innate and adaptive immunity is discussed, which may facilitate the development of novel therapeutic approaches for immunological diseases.
Abstract: Ubiquitin (Ub)-protein conjugation represents a novel means of posttranscriptional modification in a proteolysis-dependent or -independent manner. E3 Ub ligases play a key role in governing the cascade of Ub transfer reactions by recognizing and catalyzing Ub conjugation to specific protein substrates. The E3s, which can be generally classified into HECT-type and RING-type families, are involved in the regulation of many aspects of the immune system, including the development, activation, and differentiation of lymphocytes, T cell-tolerance induction, antigen presentation, immune evasion, and virus budding. E3-promoted ubiquitination affects a wide array of biological processes, such as receptor downmodulation, signal transduction, protein processing or translocation, protein-protein interaction, and gene transcription, in addition to proteasome-mediated degradation. Deficiency or mutation of some of the E3s like Cbl, Cbl-b, or Itch, causes abnormal immune responses such as autoimmunity, malignancy, and inflammation. This review discusses our current understanding of E3 Ub ligases in both innate and adaptive immunity. Such knowledge may facilitate the development of novel therapeutic approaches for immunological diseases.