scispace - formally typeset
Search or ask a question
JournalISSN: 0163-8998

Annual Review of Nuclear and Particle Science 

Annual Reviews
About: Annual Review of Nuclear and Particle Science is an academic journal published by Annual Reviews. The journal publishes majorly in the area(s): Neutrino & Quantum chromodynamics. It has an ISSN identifier of 0163-8998. Over the lifetime, 840 publications have been published receiving 69678 citations. The journal is also known as: Nuclear & particle science & AR nuclear & particle science.


Papers
More filters
Journal ArticleDOI
TL;DR: A survey of the theory and experimental tests for the propagation of cosmic rays in the Galaxy up to energies of 10 15 eV is given in this article, followed by an exposition of basic principles.
Abstract: We survey the theory and experimental tests for the propagation of cosmic rays in the Galaxy up to energies of 10 15 eV. A guide to the previous reviews and essential literature is given, followed by an exposition of basic principles. The basic ideas of cosmic-ray propagation are described, and the physical origin of its processes is explained. The various techniques for computing the observational consequences of the theory are described and contrasted. These include analytical and numerical techniques. We present the comparison of models with data, including direct and indirect—especially γ-ray—observations, and indicate what we can learn about cosmic-ray propagation. Some important topics, including electron and antiparticle propagation, are chosen for discussion.

1,072 citations

Journal ArticleDOI
TL;DR: A brief history of the original Glauber model is presented in this article, with emphasis on its development into the purely classical, geometric picture used for present-day data analyses.
Abstract: We review the theoretical background, experimental techniques, and phenomenology of what is known in relativistic heavy ion physics as the Glauber model, which is used to calculate geometric quantities. A brief history of the original Glauber model is presented, with emphasis on its development into the purely classical, geometric picture used for present-day data analyses. Distinctions are made between the optical limit and Monte Carlo approaches, which are often used interchangeably but have some essential differences in particular contexts. The methods used by the four RHIC experiments are compared and contrasted, although the end results are reassuringly similar for the various geometric observables. Finally, several important RHIC measurements are highlighted that rely on geometric quantities, estimated from Glauber calculations, to draw insight from experimental observables. The status and future of Glauber modeling in the next generation of heavy ion physics studies is briefly discussed.

1,042 citations

Journal ArticleDOI
TL;DR: The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of O-Ne-Mg-core and some Fe-core progenitors as mentioned in this paper.
Abstract: Supernova theory, numerical and analytic, has made remarkable progress in the past decade. This progress was made possible by more sophisticated simulation tools, especially for neutrino transport, improved microphysics, and deeper insights into the role of hydrodynamic instabilities. Violent, large-scale nonradial mass motions are generic in supernova cores. The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of O-Ne-Mg-core and some Fe-core progenitors. The characteristics of the neutrino emission from newborn neutron stars were revised, new features of the gravitational-wave signals were discovered, our notion of supernova nucleosynthesis was shattered, and our understanding of pulsar kicks and explosion asymmetries was significantly improved. But simulations also suggest that neutrino-powered explosions might not explain the most energetic supernovae and hypernovae, which seem to demand magnetorotational driving. Now that modeling is being advanced from...

971 citations

Journal ArticleDOI
TL;DR: Most embeddings of the Standard Model into a more unified theory, in particular those based on supergravity or superstrings, predict the existence of a hidden sector of particles that have only very weak interactions with visible-sector Standard Model particles.
Abstract: Most embeddings of the Standard Model into a more unified theory, in particular those based on supergravity or superstrings, predict the existence of a hidden sector of particles that have only very weak interactions with visible-sector Standard Model particles. Some of these exotic particle candidates [for instance, axions, axion-like particles, and hidden U(1) gauge bosons] may be very light, with masses in the subelectronvolt range, and may have very weak interactions with photons. Correspondingly, these very weakly interacting subelectronvolt particles (WISPs) may lead to observable effects in experiments (as well as in astrophysical and cosmological observations) searching for light shining through a wall, for changes in laser polarization, for nonlinear processes in large electromagnetic fields, and for deviations from Coulomb's law. We present the physics case and a status report of this emerging low-energy frontier of fundamental physics.

950 citations

Journal ArticleDOI
TL;DR: In this article, collective flow, its anisotropies, and its event-to-event fluctuations in relativistic heavy-ion collisions, as well as the extraction of the specific shear viscosity of quark-gluon plasma from collective flow data collected in heavy ion collision experiments at RHIC and the LHC are reviewed.
Abstract: We review collective flow, its anisotropies, and its event-to-event fluctuations in relativistic heavy-ion collisions, as well as the extraction of the specific shear viscosity of quark–gluon plasma from collective flow data collected in heavy-ion collision experiments at RHIC and the LHC. We emphasize the similarities between the Big Bang of our universe and the Little Bangs created in heavy-ion collisions.

930 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20235
202216
202115
202016
201916
201814