scispace - formally typeset
Search or ask a question

Showing papers in "Annual Review of Phytopathology in 2010"


Journal ArticleDOI
TL;DR: Biocontrol fungi are agents that control plant diseases and have the ability to ameliorate a wide range of abiotic stresses, and some of them can also alleviate physiological stresses such as seed aging.
Abstract: Biocontrol fungi (BCF) are agents that control plant diseases. These include the well-known Trichoderma spp. and the recently described Sebacinales spp. They have the ability to control numerous foliar, root, and fruit pathogens and even invertebrates such as nematodes. However, this is only a subset of their abilities. We now know that they also have the ability to ameliorate a wide range of abiotic stresses, and some of them can also alleviate physiological stresses such as seed aging. They can also enhance nutrient uptake in plants and can substantially increase nitrogen use efficiency in crops. These abilities may be more important to agriculture than disease control. Some strains also have abilities to improve photosynthetic efficiency and probably respiratory activities of plants. All of these capabilities are a consequence of their abilities to reprogram plant gene expression, probably through activation of a limited number of general plant pathways.

1,061 citations


Journal ArticleDOI
TL;DR: The discovery of TAL effectors is described, which act as transcriptional activators in the plant cell nucleus and are determined by a novel modular DNA-binding domain.
Abstract: Xanthomonads are bacterial plant pathogens that cause diseases on many plant species, including important crops. Key to pathogenicity of most Xanthomonas pathovars is a Hrp-type III secretion (T3S) system that translocates effector proteins into plant cells. Within the eukaryotic cell, the effectors are thought to perform a variety of tasks to support bacterial virulence, proliferation, and dissemination. We are only beginning to understand the host targets of different effectors. The largest effector family found in Xanthomonas spp. is the AvrBs3/PthA or TAL (transcription activator-like) family. TAL effectors act as transcriptional activators in the plant cell nucleus. Specificity of TAL effectors is determined by a novel modular DNA-binding domain. Here, we describe the discovery of TAL effectors and their structure, activity, and host targets.

968 citations


Journal ArticleDOI
TL;DR: Huanglongbing (HLB) is the most destructive citrus pathosystem worldwide and all infected commercial citrus industries continue to decline owing to inadequate current control methods.
Abstract: Huanglongbing (HLB) is the most destructive citrus pathosystem worldwide. Previously known primarily from Asia and Africa, it was introduced into the Western Hemisphere in 2004. All infected commercial citrus industries continue to decline owing to inadequate current control methods. HLB increase and regional spatial spread, related to vector populations, are rapid compared with other arboreal pathosystems. Disease dynamics result from multiple simultaneous spatial processes, suggesting that psyllid vector transmission is a continuum from local area to very long distance. Evolutionarily, HLB appears to have originated as an insect endosymbiont that has moved into plants. Lack of exposure of citrus to the pathogen prior to approximately 100 years ago did not provide sufficient time for development of resistance. A prolonged incubation period and regional dispersal make eradication nonviable. Multiple asymptomatic infections per symptomatic tree, incomplete systemic distribution within trees, and prolonged incubation period make detection difficult and greatly complicate disease control.

714 citations


Journal ArticleDOI
TL;DR: Strigolactones were originally isolated from plant root exudates as germination stimulants for root parasitic plants of the family Orobanchaceae, but it has been recently shown that SLs or their metabolites are a novel class of plant hormones that inhibit shoot branching.
Abstract: Strigolactones (SLs) were originally isolated from plant root exudates as germination stimulants for root parasitic plants of the family Orobanchaceae, including witchweeds (Striga spp.), broomrapes (Orobanche and Phelipanche spp.), and Alectra spp., and so were regarded as detrimental to the producing plants. Their role as indispensable chemical signals for root colonization by symbiotic arbuscular mycorrhizal fungi was subsequently unveiled, and SLs then became recognized as beneficial plant metabolites. In addition to these functions in the rhizosphere, it has been recently shown that SLs or their metabolites are a novel class of plant hormones that inhibit shoot branching. Furthermore, SLs are suggested to have other biological functions in rhizosphere communications and in plant growth and development.

602 citations


Journal ArticleDOI
TL;DR: An overview of the latest discoveries on the Trichoderma expressome and metabolome is presented, of the complex and diverse biotic interactions established in nature by these microbes, and of their proven or potential importance to agriculture and industry.
Abstract: Structural and functional genomics investigations are making an important impact on the current understanding and application of microbial agents used for plant disease control. Here, we review the case of Trichoderma spp., the most widely applied biocontrol fungi, which have been extensively studied using a variety of research approaches, including genomics, transcriptomics, proteomics, metabolomics, etc. Known for almost a century for their beneficial effects on plants and the soil, these fungi are the subject of investigations that represent a successful case of translational research, in which 'omics-generated novel understanding is directly translated in to new or improved crop treatments and management methods. We present an overview of the latest discoveries on the Trichoderma expressome and metabolome, of the complex and diverse biotic interactions established in nature by these microbes, and of their proven or potential importance to agriculture and industry.

514 citations


Journal ArticleDOI
TL;DR: Recent findings on pathogen-regulated host microRNAs and small interfering RNAs and their roles in plant-microbe interaction are discussed and small RNA pathway components, including Dicer-like proteins, double-stranded RNA (dsRNA) binding protein, RNA-dependent RNA polymerases (RDRs), and Argonaute proteins, that contribute to plant immune responses are introduced.
Abstract: Plant defense responses against pathogens are mediated by activation and repression of a large array of genes. Host endogenous small RNAs are essential in this gene expression reprogramming process. Here, we discuss recent findings on pathogen-regulated host microRNAs (miRNAs) and small interfering RNAs (siRNAs) and their roles in plant-microbe interaction. We further introduce small RNA pathway components, including Dicer-like proteins (DCLs), double-stranded RNA (dsRNA) binding protein, RNA-dependent RNA polymerases (RDRs), small RNA methyltransferase HEN1, and Argonaute (AGO) proteins, that contribute to plant immune responses. The strategies that pathogens have evolved to suppress host small RNA pathways are also discussed. Collectively, host small RNAs and RNA silencing machinery constitute a critical layer of defense in regulating the interaction of pathogens with plants.

322 citations


Journal ArticleDOI
TL;DR: Essential research is needed on nematodes in natural and agricultural soils to synchronize nutrient release and availability relative to plant needs, to test ecological hypotheses, to apply optimal foraging and niche partitioning strategies for more effective biological control, to blend organic amendments to foster disease suppression, and to develop better predictive models for land-use decisions.
Abstract: Nematodes are aquatic organisms that depend on thin water films to live and move within existing pathways of soil pores of 25–100 μm diameter. Soil nematodes can be a tool for testing ecological hypotheses and understanding biological mechanisms in soil because of their central role in the soil food web and linkage to ecological processes. Ecological succession is one of the most tested community ecology concepts, and a variety of nematode community indices have been proposed for purposes of environmental monitoring. In contrast, theories of biogeography, colonization, optimal foraging, and niche partitioning by nematodes are poorly understood. Ecological hypotheses related to strategies of coexistence of nematode species sharing the same resource have potential uses for more effective biological control and use of organic amendments to foster disease suppression. Essential research is needed on nematodes in natural and agricultural soils to synchronize nutrient release and availability relative to plant ...

303 citations


Journal ArticleDOI
TL;DR: Increasing the biological knowledge of QDR and QRLs will enhance understanding of how QDR differs from qualitative resistance and provide the necessary information to better deploy these resources in breeding.
Abstract: Quantitative disease resistance (QDR) has been observed within many crop plants but is not as well understood as qualitative (monogenic) disease resistance and has not been used as extensively in breeding. Mapping quantitative trait loci (QTLs) is a powerful tool for genetic dissection of QDR. DNA markers tightly linked to quantitative resistance loci (QRLs) controlling QDR can be used for marker-assisted selection (MAS) to incorporate these valuable traits. QDR confers a reduction, rather than lack, of disease and has diverse biological and molecular bases as revealed by cloning of QRLs and identification of the candidate gene(s) underlying QRLs. Increasing our biological knowledge of QDR and QRLs will enhance understanding of how QDR differs from qualitative resistance and provide the necessary information to better deploy these resources in breeding. Application of MAS for QRLs in breeding for QDR to diverse pathogens is illustrated by examples from wheat, barley, common bean, tomato, and pepper. Strategies for optimum deployment of QRLs require research to understand effects of QDR on pathogen populations over time.

292 citations


Journal ArticleDOI
TL;DR: A fully supported phylogeny based on gene sequence data for approximately half the named species shows that the genus probably originated from a virus of monocotyledonous plants and that it first diverged approximately 7250 years ago in Southwest Eurasia or North Africa.
Abstract: The potyviruses are one of the two most speciose taxa of plant viruses. Our expanded knowledge of the breadth and depth of their diversity and its origins has depended greatly on the use of computing and the Internet in biological research and is reviewed here. We report a fully supported phylogeny based on gene sequence data for approximately half the named species. The phylogeny shows that the genus probably originated from a virus of monocotyledonous plants and that it first diverged approximately 7250 years ago in Southwest Eurasia or North Africa. The use of computer programs to better understand the structure and evolutionary trajectory of potyvirus populations is illustrated. The review concludes with recommendations for improving potyvirus nomenclature and the databasing of potyvirus information.

239 citations


Journal ArticleDOI
TL;DR: The current knowledge of plant proteins that contribute to Agrobacterium-mediated transformation, the roles these proteins play in the transformation process, and the modern technologies that have been employed to elucidate the cell biology of transformation are discussed.
Abstract: Agrobacterium species genetically transform plants by transferring a region of plasmid DNA, T-DNA, into host plant cells. The bacteria also transfer several virulence effector proteins. T-DNA and virulence proteins presumably form T-complexes within the plant cell. Super-T-complexes likely also form by interaction of plant-encoded proteins with T-complexes. These protein-nucleic acid complexes traffic through the plant cytoplasm, enter the nucleus, and eventually deliver T-DNA to plant chromatin. Integration of T-DNA into the plant genome establishes a permanent transformation event, permitting stable expression of T-DNA-encoded transgenes. The transformation process is complex and requires participation of numerous plant proteins. This review discusses our current knowledge of plant proteins that contribute to Agrobacterium-mediated transformation, the roles these proteins play in the transformation process, and the modern technologies that have been employed to elucidate the cell biology of transformation.

197 citations


Journal ArticleDOI
TL;DR: This review focuses on the extensive membrane and organelle rearrangements that have been observed in plant cells infected with RNA viruses and how these alterations may be involved in other processes such as viral RNA translation and cell-to-cell virus transport.
Abstract: This review focuses on the extensive membrane and organelle rearrangements that have been observed in plant cells infected with RNA viruses. The modifications generally involve the formation of spherules, vesicles, and/or multivesicular bodies associated with various organelles such as the endoplasmic reticulum and peroxisomes. These virus-induced organelles house the viral RNA replication complex and are known as virus factories or viroplasms. Membrane and organelle alterations are attributed to the action of one or two viral proteins, which additionally act as a scaffold for the assembly of a large complex of proteins of both viral and host origin and viral RNA. Some virus factories have been shown to align with and traffic along microfilaments. In addition to viral RNA replication, the factories may be involved in other processes such as viral RNA translation and cell-to-cell virus transport. Confining the process of RNA replication to a specific location may also prevent the activation of certain host defense functions.

Journal ArticleDOI
TL;DR: An overview of nematode management practices that are believed to be relied upon heavily in U.S. high-value crop production systems in a world without methyl bromide is provided.
Abstract: Methyl bromide is an effective pre-plant soil fumigant used to control nematodes in many high-input, high-value crops in the United States, including vegetables, nursery plants, ornamentals, tree fruits, strawber- ries, and grapes. Because methyl bromide has provided a reliable return on investment for nematode control, many of these commodities have standardized their production practices based on the use of this chem- ical and will be negatively impacted if effective and economical alter- natives are not identified. Alternative control measures based on other chemicals, genetic resistance, and cultural practices require a greater knowledge of nematode biology to achieve satisfactory results. Here, we provide an overview of nematode management practices that we believe will be relied upon heavily in U.S. high-value crop production systems in a world without methyl bromide. Included are case studies of U.S. high-value crop production systems to demonstrate how nematode management practices other than methyl bromide may be incorporated.

Journal ArticleDOI
TL;DR: The socioeconomic and biological reasons for the paradox that although technically useful solutions now exist for providing transgenic disease resistance, very few new crops have been introduced to the global market are explored.
Abstract: Transgenic crops are now grown commercially in 25 countries worldwide. Although pathogens represent major constraints for the growth of many crops, only a tiny proportion of these transgenic crops carry disease resistance traits. Nevertheless, transgenic disease-resistant plants represent approximately 10% of the total number of approved field trials in North America, a proportion that has remained constant for 15 years. In this review, we explore the socioeconomic and biological reasons for the paradox that although technically useful solutions now exist for providing transgenic disease resistance, very few new crops have been introduced to the global market. For bacteria and fungi, the majority of transgenic crops in trials express antimicrobial proteins. For viruses, three-quarters of the transgenics express coat protein (CP) genes. There is a notable trend toward more biologically sophisticated solutions involving components of signal transduction pathways regulating plant defenses. For viruses, RNA interference is increasingly being used.

Journal ArticleDOI
TL;DR: The availability of the H. arabidopsidis genome sequence has enabled bioinformatic analyses to identify at least 130 RXLR effectors, potentially used to quell the host's defense mechanism and manipulate other host cellular processes.
Abstract: Hyaloperonospora arabidopsidis, a downy mildew pathogen of the model plant Arabidopsis, has been very useful in the understanding of the relationship between oomycetes and their host plants. This naturally coevolving pathosystem contains an amazing level of genetic diversity in host resistance and pathogen avirulence proteins. Oomycete effectors identified to date contain a targeting motif, RXLR, enabling effector entry into the host cell. The availability of the H. arabidopsidis genome sequence has enabled bioinformatic analyses to identify at least 130 RXLR effectors, potentially used to quell the host's defense mechanism and manipulate other host cellular processes. Currently, these effectors are being used to reveal their targets in the host cell. Eventually this will result in an understanding of the mechanisms used by a pathogen to sustain a biotrophic relationship with a plant.

Journal ArticleDOI
TL;DR: Recent developments in genomics, proteomics, and structural biology enable detailed and comprehensive insights into the functional architecture, evolutionary origin, and distribution of T3SS among bacterial pathogens and support current research efforts to discover novel antivirulence drugs.
Abstract: With the advent of recombinant DNA techniques, the field of molecular plant pathology witnessed dramatic shifts in the 1970s and 1980s. The new and conventional methodologies of bacterial molecular genetics put bacteria center stage. The discovery in the mid-1980s of the hrp/hrc gene cluster and the subsequent demonstration that it encodes a type III secretion system (T3SS) common to Gram negative bacterial phytopathogens, animal pathogens, and plant symbionts was a landmark in molecular plant pathology. Today, T3SS has earned a central role in our understanding of many fundamental aspects of bacterium-plant interactions and has contributed the important concept of interkingdom transfer of effector proteins determining race-cultivar specificity in plant-bacterium pathosystems. Recent developments in genomics, proteomics, and structural biology enable detailed and comprehensive insights into the functional architecture, evolutionary origin, and distribution of T3SS among bacterial pathogens and support cur...

Journal ArticleDOI
TL;DR: The history of CPMV in biotechnology can be likened to an Ouroborus, an ancient symbol depicting a snake or dragon swallowing its own tail, thus forming a circle, which led to the use of virus particles to present peptides, then to the creation of a variety of replicating virus vectors and finally to the development of a highly efficient protein expression system that does not require viral replication.
Abstract: In the 50 years since it was first described, Cowpea mosaic virus (CPMV) has become one of the most intensely studied plant viruses. Research in the past 15 to 20 years has shifted from studying the underlying genetics and structure of the virus to focusing on ways in which it can be exploited in biotechnology. This work led first to the use of virus particles to present peptides, then to the creation of a variety of replicating virus vectors and finally to the development of a highly efficient protein expression system that does not require viral replication. The circle has been completed by the use of the latter system to create empty particles for peptide presentation and other novel uses. The history of CPMV in biotechnology can be likened to an Ouroborus, an ancient symbol depicting a snake or dragon swallowing its own tail, thus forming a circle.

Journal ArticleDOI
TL;DR: A unified model of the interactions of biotrophic and hemibiotrophic pathogens is emerged, which posits that successful pathogens typically defeat two levels of plant defense by translocating cytoplasmic effectors that suppress the first defense (surface arrayed against microbial signatures) while evading the second defense (internally arraying against effectors).
Abstract: Molecular factors enabling microbial pathogens to cause plant diseases have been sought with increasing efficacy over three research eras that successively introduced the tools of disease physiology, single-gene molecular genetics, and genomics. From this work emerged a unified model of the interactions of biotrophic and hemibiotrophic pathogens, which posits that successful pathogens typically defeat two levels of plant defense by translocating cytoplasmic effectors that suppress the first defense (surface arrayed against microbial signatures) while evading the second defense (internally arrayed against effectors). As is predicted from this model and confirmed by sequence pattern-driven discovery of large repertoires of cytoplasmic effectors in the genomes of many pathogens, the coevolution of (hemi)biotrophic pathogens and their hosts has generated pathosystems featuring extreme complexity and apparent robustness. These findings highlight the need for a fourth research era of systems biology in which virulence factors are studied as pathosystem components, and pathosystems are studied for their emergent properties.

Journal ArticleDOI
TL;DR: This review explains how the nomenclature evolved and provides a historical account of the development of such models, and the process and steps involved in devising models that incorporate weather variables and data retrieval and are able to forecast plant virus epidemics effectively are explained.
Abstract: Predicting epidemics of plant virus disease constitutes a challenging undertaking due to the complexity of the three-cornered pathosystems (virus, vector, and host) involved and their interactions with the environment. A complicated nomenclature is used to describe virus epidemiological models. This review explains how the nomenclature evolved and provides a historical account of the development of such models. The process and steps involved in devising models that incorporate weather variables and data retrieval and are able to forecast plant virus epidemics effectively are explained. Their application to provide user-friendly, Internet-based decision support systems (DSSs) that determine when and where control measures are needed is described. Finally, case studies are provided of eight pathosystems representing different scenarios in which modeling approaches have been used with varying degrees of effectiveness to forecast virus epidemics in parts of the world with temperate, Mediterranean, subtropical...

Journal ArticleDOI
TL;DR: The development of effective companion crops is described, together with developments toward widespread adoption and understanding the underlying mechanisms, both for sustainability and ensuring food security, and also for exploitation beyond the cropping systems described here.
Abstract: Parasitic plants, through a range of infestation strategies, can attack crop plants and thereby require management. Because such problems often occur in resource-poor farming systems, companion cropping to manage parasitic plants is an appropriate approach. Many examples of companion cropping for this purpose have been reported, but the use of cattle forage legumes in the genus Desmodium as intercrops has been shown to be particularly successful in controlling the parasitic witchweeds (Striga spp.) that afflict approximately one quarter of sub-Saharan African cereal production. Through the use of this example, the development of effective companion crops is described, together with developments toward widespread adoption and understanding the underlying mechanisms, both for sustainability and ensuring food security, and also for exploitation beyond the cropping systems described here.

Journal ArticleDOI
TL;DR: This article relates how the lifelong passion for nematology evolved and the philosophy that drove my research program, including maintaining a balance between applied and basic research, and key collaborations I have had with other researchers.
Abstract: This article relates how my lifelong passion for nematology evolved and the philosophy that drove my research program, including maintaining a balance between applied and basic research, and key collaborations I have had with other researchers. Although the driving force behind my basic research was to advance our understanding of the molecular mechanisms of nematode parasitism of plants, the underlying theme was how to apply the new basic knowledge of nematode biology to provide better control of these economically important crop pathogens in grower fields. There are high expectations that new nematode control strategies will result from science-based solutions that can be delivered through biotechnology-derived crops and provide an unprecedented opportunity for limiting nematode damage to multiple crops.

Journal ArticleDOI
TL;DR: Antagonist mixtures, optimal timing of antagonist introductions, integrated biological and chemical control, environmental optimization, and the utilization of disarmed pathogens as antagonists are strategies with potential to minimize a pathogen refuge.
Abstract: Pathogen refuge is the idea that some potentially infectious pathogen propagules are not susceptible to the influence of an antagonistic microbial agent. The existence of a refuge can be attributable to one or more factors, including temporal, spatial, structural, and probabilistic, or to the pathogen’s evolved ability to acquire antagonist-free space prior to ingress into a plant host. Within a specific pathosystem, refuge size can be estimated in experiments by measuring the proportion of pathogen propagules that remain infective as a function of the amount of antagonist introduced to the system. Refuge size is influenced by qualities of specific antagonists and by environment but less so by the quantity of antagonist. Consequently, most efforts to improve and optimize biological control are in essence efforts to reduce refuge size. Antagonist mixtures, optimal timing of antagonist introductions, integrated biological and chemical control, environmental optimization, and the utilization of disarmed pathogens as antagonists are strategies with potential to minimize a pathogen refuge.

Journal ArticleDOI
TL;DR: An instructional narrative that begins with a simple question: Why are there diseases is presented, to facilitate exploration of such topics as the evolution of parasitism, plant adaptations to Parasitism, impacts of parasites on native plant communities, and ways in which human intervention can foster the emergence of aggressive plant pathogens.
Abstract: Disease is a universal feature of life for multicellular organisms, and the study of disease has contributed to the establishment of key concepts in the biological sciences. This implies strong connections between plant pathology and basic biology, something that could perhaps be made more apparent to undergraduate students interested in the life sciences. To that end, we present an instructional narrative that begins with a simple question: Why are there diseases? Responses and follow-up questions can facilitate exploration of such topics as the evolution of parasitism, plant adaptations to parasitism, impacts of parasites on native plant communities, and ways in which human intervention can foster the emergence of aggressive plant pathogens. This approach may help to attract students who would not have found their way to plant pathology through traditional pathways. Packaging the narrative as a game may render it more interesting and accessible, particularly to a younger audience.