scispace - formally typeset
Search or ask a question

Showing papers in "Antimicrobial Agents and Chemotherapy in 2003"


Journal ArticleDOI
TL;DR: Results show that oxygen limitation and low metabolic activity in the interior of the biofilm, not poor antibiotic penetration, are correlated with antibiotic tolerance of this P. aeruginosa biofilm system.
Abstract: The roles of slow antibiotic penetration, oxygen limitation, and low metabolic activity in the tolerance of Pseudomonas aeruginosa in biofilms to killing by antibiotics were investigated in vitro. Tobramycin and ciprofloxacin penetrated biofilms but failed to effectively kill the bacteria. Bacteria in colony biofilms survived prolonged exposure to either 10 μg of tobramycin ml−1or 1.0 μg of ciprofloxacin ml−1. After 100 h of antibiotic treatment, during which the colony biofilms were transferred to fresh antibiotic-containing plates every 24 h, the log reduction in viable cell numbers was only 0.49 ± 0.18 for tobramycin and 1.42 ± 0.03 for ciprofloxacin. Antibiotic permeation through colony biofilms, indicated by a diffusion cell bioassay, demonstrated that there was no acceleration in bacterial killing once the antibiotics penetrated the biofilms. These results suggested that limited antibiotic diffusion is not the primary protective mechanism for these biofilms. Transmission electron microscopic observations of antibiotic-affected cells showed lysed, vacuolated, and elongated cells exclusively near the air interface in antibiotic-treated biofilms, suggesting a role for oxygen limitation in protecting biofilm bacteria from antibiotics. To test this hypothesis, a microelectrode analysis was performed. The results demonstrated that oxygen penetrated 50 to 90 μm into the biofilm from the air interface. This oxic zone correlated to the region of the biofilm where an inducible green fluorescent protein was expressed, indicating that this was the active zone of bacterial metabolic activity. These results show that oxygen limitation and low metabolic activity in the interior of the biofilm, not poor antibiotic penetration, are correlated with antibiotic tolerance of this P. aeruginosa biofilm system.

918 citations


Journal ArticleDOI
TL;DR: A clear correlation between dissipation of membrane potential and the bactericidal activity of daptomycin is demonstrated and a multistep model for daptomecin's mechanism of action is proposed.
Abstract: The objective of this study was to further elucidate the role of membrane potential in the mechanism of action of daptomycin, a novel lipopeptide antibiotic. Membrane depolarization was measured by both fluorimetric and flow cytometric assays. Adding daptomycin (5 micro g/ml) to Staphylococcus aureus gradually dissipated membrane potential. In both assays, cell viability was reduced by >99% and membrane potential was reduced by >90% within 30 min of adding daptomycin. Cell viability decreased in parallel with changes in membrane potential, demonstrating a temporal correlation between bactericidal activity and membrane depolarization. Decreases in viability and potential also showed a dose-dependent correlation. Depolarization is indicative of ion movement across the cytoplasmic membrane. Fluorescent probes were used to demonstrate Ca(2+)-dependent, daptomycin-triggered potassium release from S. aureus. Potassium release was also correlated with bactericidal activity. This study demonstrates a clear correlation between dissipation of membrane potential and the bactericidal activity of daptomycin. A multistep model for daptomycin's mechanism of action is proposed.

630 citations


Journal ArticleDOI
TL;DR: Although no established interpretative breakpoints are available for the candins (CFG, MFG, and AFG) and the new azoles (VOR and POS), they all exhibited excellent antifungal activity, even for those strains resistant to the other aforementioned agents.
Abstract: Candida bloodstream isolates (n = 2,000) from two multicenter clinical trials carried out by the National Institute of Allergy and Infectious Diseases Mycoses Study Group between 1995 and 1999 were tested against amphotericin B (AMB), flucytosine (5FC), fluconazole (FLU), itraconazole (ITR), voriconazole (VOR), posaconazole (POS), caspofungin (CFG), micafungin (MFG), and anidulafungin (AFG) using the NCCLS M27-A2 microdilution method. All drugs were tested in the NCCLS-specified RPMI 1640 medium except for AMB, which was tested in antibiotic medium 3. A sample of isolates was also tested in RPMI 1640 supplemented to 2% glucose and by using the diluent polyethylene glycol (PEG) in lieu of dimethyl sulfoxide for those drugs insoluble in water. Glucose supplementation tended to elevate the MIC, whereas using PEG tended to decrease the MIC. Trailing growth occurred frequently with azoles. Isolates were generally susceptible to AMB, 5FC, and FLU. Rates of resistance to ITR approached 20%. Although no established interpretative breakpoints are available for the candins (CFG, MFG, and AFG) and the new azoles (VOR and POS), they all exhibited excellent antifungal activity, even for those strains resistant to the other aforementioned agents.

515 citations


Journal ArticleDOI
TL;DR: Transferable plasmid-mediated quinolone resistance associated with qnr is prevalent in quinOLone-resistant clinical strains of E. coli from Shanghai and may contribute to the rapid increase in bacterial resistance to qu inolones in China.
Abstract: Although quinolone resistance usually results from chromosomal mutations, recent studies indicate that quinolone resistance can also be plasmid mediated. The gene responsible, qnr, is distinct from the known quinolone resistance genes and in previous studies seemed to be restricted to Klebsiella pneumoniae and Escherichia coli isolates from the University of Alabama in Birmingham, where this resistance was discovered. In Shanghai, the frequency of ciprofloxacin resistance in E. coli has exceeded 50% since 1993. Seventy-eight unique ciprofloxacin-resistant clinical isolates of E. coli from Shanghai hospitals were screened for the qnr gene by colony blotting and Southern hybridization of plasmid DNA. Conjugation experiments were done with azide-resistant E. coli J53 as a recipient with selection for plasmid-encoded antimicrobial resistance (chloramphenicol, gentamicin, or tetracycline) and azide counterselection. qnr genes were sequenced, and the structure of the plasmid DNA adjacent to qnr was analyzed by primer walking with a sequential series of outward-facing sequencing primers with plasmid DNA templates purified from transconjugants. Six (7.7%) of 78 strains gave a reproducible hybridization signal with a qnr gene probe on colony blots and yielded strong signals on plasmid DNA preparations. Quinolone resistance was transferred from all six probe-positive strains. Transconjugants had 16- to 250-fold increases in the MICs of ciprofloxacin relative to that of the recipient. All six strains contained qnr with a nucleotide sequence identical to that originally reported, except for a single nucleotide change (CTA→CTG at position 537) encoding the same amino acid. qnr was located in complex In4 family class 1 integrons. Two completely sequenced integrons were designated In36 and In37. Transferable plasmid-mediated quinolone resistance associated with qnr is thus prevalent in quinolone-resistant clinical strains of E. coli from Shanghai and may contribute to the rapid increase in bacterial resistance to quinolones in China.

460 citations


Journal ArticleDOI
TL;DR: It is inferred that MRSA has emerged at least 20 times upon acquisition of the methicillin resistance determinant, which is carried on a mobile genetic element called the staphylococcal cassette chromosome mec (SCCmec).
Abstract: Five major lineages of methicillin-resistant Staphylococcus aureus (MRSA) have evolved since the introduction of methicillin for the treatment of infections caused by penicillin-resistant S. aureus in 1959. The clones of these lineages are responsible for the vast majority of hospital-acquired MRSA disease globally. We have constructed high-resolution evolutionary models for each lineage using a parsimony approach with 15 partial gene sequences from 147 geographically diverse isolates. On the basis of these models, we infer that MRSA has emerged at least 20 times upon acquisition of the methicillin resistance determinant, which is carried on a mobile genetic element called the staphylococcal cassette chromosome mec (SCCmec). The acquisition of SCCmec by sensitive clones was four times more common than the replacement of one SCCmec with another. Notably, SCCmec type IV was found in twice as many clones as any other SCCmec type, and it is this SCCmec type which is commonly found in clones from patients with community-acquired MRSA disease. Our findings suggest that most clones of MRSA arise by the acquisition of SCCmec type IV by methicillin-sensitive isolates.

454 citations


Journal ArticleDOI
TL;DR: Recent advances in the study of the ribosome, tetracycline, and the RPPs that further the understanding of RPP activity are surveyed.
Abstract: Ribosomal protection represents an important tactic for promoting tetracycline resistance in both gram-positive and -negative species. Tet(O) and Tet(M) are the best studied of these determinants and were originally isolated from Campylobacter jejuni and Streptococcus spp., respectively, although both are widely distributed (10). These are the only two ribosomal protection proteins (RPPs) that have been studied in detail, and therefore, they have been dealt with extensively in this review. It is assumed, however, that the other members of this class of RPPs [Tet(S), Tet(T), Tet(Q), TetB(P), Tet(W), and OtrA] function through similar mechanisms. The distribution of these determinants in the eubacteria has been extensively reviewed by Chopra and Roberts (10) and more recent information can also be found at http://faculty.washington.edu/marilynr/. Although this review focuses primarily on RPPs, it should be noted that a great variety of tetracycline resistance mechanisms exist (for a review, see reference 10). These determinants include (i) the efflux-based mechanisms found in gram-positive and gram-negative bacteria (10), (ii) the enzymatic degradation of tetracyclines found in Bacteroides (46), (iii) the rRNA mutations found in Propionibacterium acnes and Helicobacter pylori (19, 40, 55), and (iv) a host of undetermined mechanisms which bear little resemblance to the well-documented determinants mentioned above (10). In this review, we will survey recent advances in the study of the ribosome, tetracycline, and the RPPs that further the understanding of RPP activity. Earlier work dealing with Tet(M) and Tet(O) as well as the other RPPs has been reviewed previously (51, 52).

396 citations


Journal ArticleDOI
TL;DR: This study provides further evidence of the global dissemination of CTX-M type ESBLs and emphasizes the need for their epidemiological monitoring.
Abstract: A total of 904 consecutive nosocomial isolates of Escherichia coli and Klebsiella pneumoniae collected from 28 Russian hospitals were screened for production of extended-spectrum β-lactamases (ESBLs). The ESBL phenotype was detected in 78 (15.8%) E. coli and 248 (60.8%) K. pneumoniae isolates. One hundred fifteen isolates carried the genes for CTX-M-type β-lactamases, which, as shown by PCR-restriction fragment length polymorphism analysis, were distributed into the two genetic groups of CTX-M-1 (93%)- and CTX-M-2 (7%)-related enzymes. Isolates producing the enzymes of the first group were found in 20 hospitals from geographically distant regions of the country and were characterized by considerable diversity of genetic types, as was demonstrated by enterobacterial repetitive consensus PCR typing. Within this group the CTX-M-3 and the CTX-M-15 β-lactamases were identified. In contrast, the enzymes of the CTX-M-2 group (namely, CTX-M-5) were detected only in eight clonally related E. coli isolates from a single hospital. Notably, the levels of resistance to ceftazidime were remarkably variable among the CTX-M producers. This study provides further evidence of the global dissemination of CTX-M type ESBLs and emphasizes the need for their epidemiological monitoring.

389 citations


Journal ArticleDOI
TL;DR: Proteomic technology is used to elucidate the complex cellular responses of Bacillus subtilis to antimicrobial compounds belonging to classical and emerging antibiotic classes and suggests that novel compounds with unknown mechanisms of action may be classified.
Abstract: We have used proteomic technology to elucidate the complex cellular responses of Bacillus subtilis to antimicrobial compounds belonging to classical and emerging antibiotic classes. We established on two-dimensional gels a comprehensive database of cytoplasmic proteins with pIs covering a range of 4 to 7 that were synthesized during treatment with antibiotics or agents known to cause generalized cell damage. Although each antibiotic showed an individual protein expression profile, overlaps in the expression of marker proteins reflected similarities in molecular drug mechanisms, suggesting that novel compounds with unknown mechanisms of action may be classified. Indeed, one such substance, a structurally novel protein synthesis inhibitor (BAY 50-2369), could be classified as a peptidyltransferase inhibitor. These results suggest that this technique gives new insights into the bacterial response toward classical antibiotics and hints at modes of action of novel compounds. Such a method should prove useful in the process of antibiotic drug discovery.

388 citations


Journal ArticleDOI
TL;DR: The widespread emergence and proliferation of CTX-M-type ESBLs is particularly noteworthy and may have important implications for clinical microbiology laboratories and for physicians treating patients with serious K. pneumoniae infections.
Abstract: A huge variety of extended-spectrum -lactamases (ESBLs) have been detected during the last 20 years. The majority of these have been of the TEM or SHV lineage. We have assessed ESBLs occurring among a collection of 455 bloodstream isolates of Klebsiella pneumoniae, collected from 12 hospitals in seven countries. Multiple -lactamases were produced by isolates with phenotypic evidence of ESBL production (mean of 2.7 -lactamases per isolate; range, 1 to 5). SHV-type ESBLs were the most common ESBL, occurring in 67.1% (49 of 73) of isolates with phenotypic evidence of ESBL production. In contrast, TEM-type ESBLs (TEM-10 type, -12 type, -26 type, and -63 type) were found in just 16.4% (12 of 73) of isolates. The finding of TEM-10 type and TEM-12 type represents the first detection of a TEM-type ESBL in South America. PER (for Pseudomonas extended resistance)-type -lactamases were detected in five of the nine isolates from Turkey and were found with SHV-2-type and SHV-5-type ESBLs in two of the isolates. CTX-M-type ESBLs (blaCTX-M-2 type and blaCTX-M-3 type) were found in 23.3% (17 of 73) of isolates and were found in all study countries except for the United States. We also detected CTX-M-type ESBLs in four countries where they have previously not been described— Australia, Belgium, Turkey, and South Africa. The widespread emergence and proliferation of CTX-M-type ESBLs is particularly noteworthy and may have important implications for clinical microbiology laboratories and for physicians treating patients with serious K. pneumoniae infections.

388 citations


Journal ArticleDOI
TL;DR: For aminoglycosides and most β-lactams susceptibility rates for P. aeruginosa and A. baumannii were constant or decreased only marginally from 1998 to 2001, but greater decreases in susceptibility rates were, however, observed for fluoroquinolones and ceftazidime among P. Aerug inosa isolates.
Abstract: Pseudomonas aeruginosa and Acinetobacter baumannii are the most prevalent nonfermentative bacterial species isolated from clinical specimens of hospitalized patients. A surveillance study of 65 laboratories in the United States from 1998 to 2001 found >90% of isolates of P. aeruginosa from hospitalized patients to be susceptible to amikacin and piperacillin-tazobactam; 80 to 90% of isolates to be susceptible to cefepime, ceftazidime, imipenem, and meropenem; and 70 to 80% of isolates to be susceptible to ciprofloxacin, gentamicin, levofloxacin, and ticarcillin-clavulanate. From 1998 to 2001, decreases in antimicrobial susceptibility (percents) among non-intensive-care-unit (non-ICU) inpatients and ICU patients, respectively, were greatest for ciprofloxacin (6.1 and 6.5), levofloxacin (6.6 and 3.5), and ceftazidime (4.8 and 3.3). Combined 1998 to 2001 results for A. baumannii isolated from non-ICU inpatients and ICU patients, respectively, demonstrated that >90% of isolates tested were susceptible to imipenem (96.5 and 96.6%) and meropenem (91.6 and 91.7%); fewer isolates from both non-ICU inpatients and ICU patients were susceptible to amikacin and ticarcillin-clavulanate (70 to 80% susceptible); and <60% of isolates were susceptible to ceftazidime, ciprofloxacin, gentamicin, or levofloxacin. From 1998 to 2001, rates of multidrug resistance (resistance to at least three of the drugs ceftazidime, ciprofloxacin, gentamicin, and imipenem) showed small increases among P. aeruginosa strains isolated from non-ICU inpatients (5.5 to 7.0%) and ICU patients (7.4 to 9.1%). From 1998 to 2001, rates of multidrug resistance among A. baumannii strains isolated from non-ICU inpatients (27.6 to 32.5%) and ICU patients (11.6 to 24.2%) were higher and more variable than those observed for P. aeruginosa. Isolates concurrently susceptible, intermediate, or resistant to both imipenem and meropenem accounted for 89.8 and 91.2% of P. aeruginosa and A. baumannii isolates, respectively, studied from 1998 to 2001. In conclusion, for aminoglycosides and most beta-lactams susceptibility rates for P. aeruginosa and A. baumannii were constant or decreased only marginally (

381 citations


Journal ArticleDOI
TL;DR: Data suggest that CA-MRSA strains may represent a new acquisition of SCCmec DNA in a previously susceptible genetic background that was capable of causing nmTSS via superantigen production.
Abstract: Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) is a growing public health concern that has been associated with pediatric fatalities. It is hypothesized that the evolution of CA-MRSA is a recent event due to the acquisition of mec DNA by previously methicillin-susceptible strains that circulated in the community. This study investigated the genetic relatedness between CA-MRSA, hospital-associated MRSA (HA-MRSA), and nonmenstrual toxic shock syndrome (nmTSS) isolates. Thirty-one of 32 CA-MRSA isolates were highly related as determined by pulsed-field gel electrophoresis and spa typing yet were distinguishable from 32 HA-MRSA strains. The 31 related CA-MRSA isolates produced either staphylococcal enterotoxin B (n = 5) or C (n = 26), and none made TSS toxin 1. All CA-MRSA isolates tested contained a type IV staphylococcal cassette chromosome mec (SCCmec) element. In comparison, none of the HA-MRSA isolates (n = 32) expressed the three superantigens. Antibiotic susceptibility patterns were different between the CA-MRSA and HA-MRSA isolates; CA-MRSA was typically resistant only to β-lactam antibiotics. Six of twenty-one nmTSS isolates were indistinguishable or highly related to the CA-MRSA isolates. MnCop, an nmTSS isolate obtained in Alabama in 1986, was highly related to the CA-MRSA isolates except that it did not contain an SCCmec element. These data suggest that CA-MRSA strains may represent a new acquisition of SCCmec DNA in a previously susceptible genetic background that was capable of causing nmTSS. CA-MRSA poses a serious health risk not only because it is resistant to the antibiotics of choice for community-acquired staphylococcal infections but also because of its ability to cause nmTSS via superantigen production.

Journal ArticleDOI
TL;DR: Considering the favorable pharmacokinetics of UIC-94017 when administered with ritonavir, the present data warrant that UIC -94017 be further developed as a potential therapeutic agent for the treatment of primary and multi-PI-resistant HIV-1 infections.
Abstract: We designed, synthesized, and identified UIC-94017 (TMC114), a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) containing a 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF) and a sulfonamide isostere which is extremely potent against laboratory HIV-1 strains and primary clinical isolates (50% inhibitory concentration [IC(50)], approximately 0.003 micro M; IC(90), approximately 0.009 micro M) with minimal cytotoxicity (50% cytotoxic concentration for CD4(+) MT-2 cells, 74 micro M). UIC-94017 blocked the infectivity and replication of each of HIV-1(NL4-3) variants exposed to and selected for resistance to saquinavir, indinavir, nelfinavir, or ritonavir at concentrations up to 5 micro M (IC(50)s, 0.003 to 0.029 micro M), although it was less active against HIV-1(NL4-3) variants selected for resistance to amprenavir (IC(50), 0.22 micro M). UIC-94017 was also potent against multi-PI-resistant clinical HIV-1 variants isolated from patients who had no response to existing antiviral regimens after having received a variety of antiviral agents. Structural analyses revealed that the close contact of UIC-94017 with the main chains of the protease active-site amino acids (Asp-29 and Asp-30) is important for its potency and wide spectrum of activity against multi-PI-resistant HIV-1 variants. Considering the favorable pharmacokinetics of UIC-94017 when administered with ritonavir, the present data warrant that UIC-94017 be further developed as a potential therapeutic agent for the treatment of primary and multi-PI-resistant HIV-1 infections.

Journal ArticleDOI
TL;DR: Daptomycin was well tolerated when it was administered once daily at a dose as high as 8 mg/kg for 14 days, and there were no serious AEs and no pattern of dose-related events.
Abstract: The purpose of this paper is to establish the pharmacokinetics and safety of escalating, once-daily doses of daptomycin, a novel lipopeptide antibiotic active against gram-positive pathogens, including those resistant to methicillin and vancomycin. This phase 1, multiple-dose, double-blind study involved 24 healthy subjects in three dose cohorts (4, 6, and 8 mg/kg of body weight) who were randomized to receive daptomycin or the control at a 3:1 ratio and administered the study medication by a 30-min intravenous infusion every 24 h for 7 to 14 days. Daptomycin pharmacokinetics was assessed by blood and urine sampling. Safety and tolerability were evaluated by monitoring adverse events (AEs) and laboratory parameters. Daptomycin pharmacokinetics was linear through 6 mg/kg, with a slight (∼20%) nonlinearity in the area under the curve and trough concentration at the highest dose studied (8 mg/kg). The pharmacokinetic parameters measured on the median day of the study period, (day 7) were half-life (∼9 h), volume of distribution (∼0.1 liters/kg), systemic clearance (∼8.2 ml/h/kg), and percentage of the drug excreted intact in urine from 0 to 24 h (∼54%). Daptomycin protein binding (mean amount bound, 91.7%) was independent of the drug concentration. No gender effect was observed. All subjects who received daptomycin completed the study. The frequencies and distributions of treatment-emergent AEs were similar for the subjects who received daptomycin and the control subjects. There were no serious AEs and no pattern of dose-related events. The pharmacokinetics of once-daily administration of daptomycin was linear through 6 mg/kg. For all three doses, plasma daptomycin concentrations were consistent and predictable throughout the dosing interval. Daptomycin was well tolerated when it was administered once daily at a dose as high as 8 mg/kg for 14 days.

Journal ArticleDOI
TL;DR: A variety of single nucleotide polymorphisms in multiple genes are found exclusively in INH-resistant clinical isolates, and these genes either are involved in mycolic acid biosynthesis or are overexpressed as a response to the buildup or cellular toxicity of INH.
Abstract: Isoniazid (INH) is a central component of drug regimens used worldwide to treat tuberculosis. Previous studies have identified resistance-associated mutations in katG, inhA, kasA, ndh, and the oxyR-ahpC intergenic region. DNA microarray-based experiments have shown that INH induces several genes in Mycobacterium tuberculosis that encode proteins physiologically relevant to the drug's mode of action. To gain further insight into the molecular genetic basis of INH resistance, 20 genes implicated in INH resistance were sequenced for INH resistance-associated mutations. Thirty-eight INH-monoresistant clinical isolates and 86 INH-susceptible isolates of M. tuberculosis were obtained from the Texas Department of Health and the Houston Tuberculosis Initiative. Epidemiologic independence was established for all isolates by IS6110 restriction fragment length polymorphism analysis. Susceptible isolates were matched with resistant isolates by molecular genetic group and IS6110 profiles. Spoligotyping was done with isolates with five or fewer IS6110 copies. A major genetic group was established on the basis of the polymorphisms in katG codon 463 and gyrA codon 95. MICs were determined by the E-test. Semiquantitative catalase assays were performed with isolates with mutations in the katG gene. When the 20 genes were sequenced, it was found that 17 (44.7%) INH-resistant isolates had a single-locus, resistance-associated mutation in the katG, mabA, or Rv1772 gene. Seventeen (44.7%) INH-resistant isolates had resistance-associated mutations in two or more genes, and 76% of all INH-resistant isolates had a mutation in the katG gene. Mutations were also identified in the fadE24, Rv1592c, Rv1772, Rv0340, and iniBAC genes, recently shown by DNA-based microarray experiments to be upregulated in response to INH. In general, the MICs were higher for isolates with mutations in katG and the isolates had reduced catalase activities. The results show that a variety of single nucleotide polymorphisms in multiple genes are found exclusively in INH-resistant clinical isolates. These genes either are involved in mycolic acid biosynthesis or are overexpressed as a response to the buildup or cellular toxicity of INH.

Journal ArticleDOI
TL;DR: Escherichia coli strains from patients with uncomplicated urinary tract infections were examined by DNA sequencing for fluoroquinolone resistance-associated mutations in six genes, suggesting that an increased general mutation rate may play a significant role in the development of high-level resistance to fluoroquolones by increasing the rate of accumulation of rare new mutations.
Abstract: Escherichia coli strains from patients with uncomplicated urinary tract infections were examined by DNA sequencing for fluoroquinolone resistance-associated mutations in six genes: gyrA, gyrB, parC, parE, marOR, and acrR. The 54 strains analyzed had a susceptibility range distributed across 15 dilutions of the fluoroquinolone MICs. There was a correlation between the fluoroquinolone MIC and the number of resistance mutations that a strain carried, with resistant strains having mutations in two to five of these genes. Most resistant strains carried two mutations in gyrA and one mutation in parC. In addition, many resistant strains had mutations in parE, marOR, and/or acrR. No (resistance) mutation was found in gyrB. Thus, the evolution of fluoroquinolone resistance involves the accumulation of multiple mutations in several genes. The spontaneous mutation rate in these clinical strains varied by 2 orders of magnitude. A high mutation rate correlated strongly with a clinical resistance phenotype. This correlation suggests that an increased general mutation rate may play a significant role in the development of high-level resistance to fluoroquinolones by increasing the rate of accumulation of rare new mutations.

Journal ArticleDOI
TL;DR: These studies showed that erg11/erg11 mutants of a C. albicans strain harboring a defective erg11 allele can be obtained in vitro in the presence of amphotericin B, and could therefore be selected by similar mechanisms during antifungal therapy.
Abstract: The role of sterol mutations in the resistance of Candida albicans to antifungal agents has not been thoroughly investigated. Previous work reported that clinical C. albicans strains resistant to both azole antifungals and amphotericin B were defective in ERG3, a gene encoding sterol Δ5,6-desaturase. It is also believed that a deletion of the lanosterol 14α-demethylase gene, ERG11, is possible only under aerobic conditions when ERG3 is not functional. We tested these hypotheses by creating mutants by targeted deletion of the ERG3 and ERG11 genes and subjecting those mutants to antifungal susceptibility testing and sterol analysis. The homozygous erg3/erg3 mutant created, DSY1751, was resistant to azole derivatives, as expected. This mutant was, however, slightly more susceptible to amphotericin B than the parent wild type. It was possible to generate erg11/erg11 mutants in the DSY1751 background but also, surprisingly, in the background of a wild-type isolate with functional ERG3 alleles under aerobic conditions. This mutant (DSY1769) was obtained by exposure of an ERG11/erg11 heterozygous strain in a medium containing 10 μg of amphotericin B per ml. Amphotericin B-resistant strains were obtained only from ERG11/erg11 heterozygotes at a frequency of approximately 5 × 10−5 to 7 × 10−5, which was consistent with mitotic recombination between the first disrupted erg11 allele and the other remaining functional ERG11 allele. DSY1769 was also resistant to azole derivatives. The main sterol fraction in DSY1769 contained lanosterol and eburicol. These studies showed that erg11/erg11 mutants of a C. albicans strain harboring a defective erg11 allele can be obtained in vitro in the presence of amphotericin B. Amphotericin B-resistant strains could therefore be selected by similar mechanisms during antifungal therapy.

Journal ArticleDOI
TL;DR: Results indicate that K. pneumoniae in this system experience nutrient limitation locally within the biofilm, leading to zones in which the bacteria enter stationary phase and are growing slowly or not at all, in which bacteria are less susceptible to killing by antibiotics.
Abstract: Biofilms formed by Klebsiella pneumoniae resisted killing during prolonged exposure to ampicillin or ciprofloxacin even though these agents have been shown to penetrate bacterial aggregates. Bacteria dispersed from biofilms into medium quickly regained most of their susceptibility. Experiments with free-floating bacteria showed that stationary-phase bacteria were protected from killing by either antibiotic, especially when the test was performed in medium lacking carbon and nitrogen sources. These results suggested that the antibiotic tolerance of biofilm bacteria could be explained by nutrient limitation in the biofilm leading to stationary-phase existence of at least some of the cells in the biofilm. This mechanism was supported by experimental characterization of nutrient availability and growth status in biofilms. The average specific growth rate of bacteria in biofilms was only 0.032 h(-1) compared to the specific growth rate of planktonic bacteria of 0.59 h(-1) measured in the same medium. Glucose did not penetrate all the way through the biofilm, and oxygen was shown to penetrate only into the upper 100 micro m. The specific catalase activity was elevated in biofilm bacteria to a level similar to that of stationary-phase planktonic cells. Transmission electron microscopy revealed that bacteria were affected by ampicillin near the periphery of the biofilm but were not affected in the interior. Taken together, these results indicate that K. pneumoniae in this system experience nutrient limitation locally within the biofilm, leading to zones in which the bacteria enter stationary phase and are growing slowly or not at all. In these inactive regions, bacteria are less susceptible to killing by antibiotics.

Journal ArticleDOI
TL;DR: In time-kill studies, rifampin exhibited area under the concentration-time curve (AUC)-dependent killing in vitro, with maximal killing seen on all days and with the potency increasing steadily over a 9-day exposure period.
Abstract: Limited information exists on the pharmacokinetic (PK)-pharmacodynamic (PD) relationships of drugs against Mycobacterium tuberculosis. Our aim was to identify the PK-PD parameter that best describes the efficacy of rifampin on the basis of in vitro and PK properties. Consistent with 83.8% protein binding by equilibrium dialysis, the rifampin MIC for M. tuberculosis strain H37Rv rose from 0.1 in a serum-free system to 1.0 mg/ml when it was tested in the presence of 50% serum. In time-kill studies, rifampin exhibited area under the concentration-time curve (AUC)-dependent killing in vitro, with maximal killing seen on all days and with the potency increasing steadily over a 9-day exposure period. MIC and time-kill studies performed with intracellular organisms in a macrophage monolayer model yielded similar results. By use of a murine aerosol infection model with dose ranging and dose fractionation over 6 days, the PD parameter that best correlated with a reduction in bacterial counts was found to be AUC/MIC (r(2) = 0.95), whereas the maximum concentration in serum/MIC (r(2) = 0.86) and the time that the concentration remained above the MIC (r(2) = 0.44) showed lesser degrees of correlation.

Journal ArticleDOI
TL;DR: It appears that posttranscriptional modification of 16S rRNA can confer high-level broad-range resistance to aminoglycosides in gram-negative human pathogens.
Abstract: A self-transferable plasmid of ca. 80 kb, pIP1204, conferred multiple-antibiotic resistance to Klebsiella pneumoniae BM4536, which was isolated from a urinary tract infection. Resistance to β-lactams was due to the bla TEM1 and bla CTX-M genes, resistance to trimethroprim was due to the dhfrXII gene, resistance to sulfonamides was due to the sul1 gene, resistance to streptomycin-spectinomycin was due to the ant3"9 gene, and resistance to nearly all remaining aminoglycosides was due to the aac3-II gene and a new gene designated armA (aminoglycoside resistance methylase). The cloning of armA into a plasmid in Escherichia coli conferred to the new host high-level resistance to 4,6-disubstituted deoxystreptamines and fortimicin. The deduced sequence of ArmA displayed from 37 to 47% similarity to those of 16S rRNA m 7 G methyltransferases from various actinomycetes, which confer resistance to aminoglycoside-producing strains. However, the low guanine-plus-cytosine content of armA (30%) does not favor an actinomycete origin for the gene. It therefore appears that posttranscriptional modification of 16S rRNA can confer high-level broad-range resistance to aminoglycosides in gram-negative human pathogens.

Journal ArticleDOI
TL;DR: The ability of ISEcp1-like elements to mobilize and to promote the expression of β-lactamase genes may explain, in part, the current spread of CTX-M-type enzymes worldwide.
Abstract: The genetic structures (ca. 10-kb DNA fragment) surrounding the plasmid-borne extended-spectrum beta-lactamase bla(CTX-M-19) gene in a Klebsiella pneumoniae clinical isolate were determined. This beta-lactamase gene was part of a 4,797-bp transposon inserted inside orf1 of Tn1721. Inside this transposon, bla(CTX-M-19) was bracketed upstream and downstream by insertion sequences ISE cp1B and IS903D, respectively, and further downstream by a truncated gene encoding an outer membrane protein for iron transport. The single-copy ISEcp1B element was probably involved alone in the mobilization process that led to a 5-bp duplication at the target site of the transposed fragment. This mobilization event probably involved one inverted repeat of ISE cp1B and a second sequence farther away, resembling its second inverted repeat. Additionally, ISEcp1B provided -35 and -10 promoter sequences, contributing to the high-level expression of the bla(CTX-M-19) gene. Southern blot analysis failed to identify a reservoir of ISEcp1-like sequences among a series of gram-negative and gram-positive bacterial species usually found in the skin and intestinal human floras. The ability of ISEcp1-like elements to mobilize and to promote the expression of beta-lactamase genes may explain, in part, the current spread of CTX-M-type enzymes worldwide.

Journal ArticleDOI
TL;DR: The phenomenon of vancomycin heteroresistance in S. aureus (hVISA) has been described more frequently in the literature, although the best method to detect hVISA strains and their clinical significance are ill-defined.
Abstract: The first report of Staphylococcus aureus with intermediate-level resistance to vancomycin (VISA) was from Japan in 1997 (20), raising the threat of incurable staphylococcal infections. Since then, a number of cases have been reported worldwide, with eight confirmed cases in the United States as of June 2002 (9, 13). The majority of these cases have occurred in patients who have had prolonged exposure to vancomycin (13). Furthermore, the majority of these strains appear to have evolved from methicillin-resistant S. aureus (MRSA) strains previously infecting the patient, a conclusion that may be drawn from the similarities observed between the pulsed-field gel electrophoresis patterns of the VISA strains and the preexisting MRSA strains (12, 34). Fortunately, since emerging 6 years ago, infection with VISA is still a rare event. However, the phenomenon of vancomycin heteroresistance in S. aureus (hVISA) has been described more frequently in the literature, although the best method to detect hVISA strains and their clinical significance are ill-defined.

Journal ArticleDOI
TL;DR: The results of this study show that toluidine blue-mediated lethal photosensitization of P. gingivalis is possible in vivo and that this results in decreased bone loss, suggesting that photodynamic therapy may be useful as an alternative approach for the antimicrobial treatment of periodontitis.
Abstract: Porphyromonas gingivalis is one of the major causative organisms of periodontitis and has been shown to be susceptible to toluidine blue-mediated photosensitization in vitro. The aims of the present study were to determine whether this technique could be used to kill the organism in the oral cavities of rats and whether this would result in a reduction in the alveolar bone loss characteristic of periodontitis. The maxillary molars of rats were inoculated with P. gingivalis and exposed to up to 48 J of 630-nm laser light in the presence of toluidine blue. The number of surviving bacteria was then determined, and the periodontal structures were examined for evidence of any damage. When toluidine blue was used together with laser light there was a significant reduction in the number of viable P. gingivalis organisms. No viable bacteria could be detected when 1 mg of toluidine blue per ml was used in conjunction with all light doses used. On histological examination, no adverse effect of photosensitization on the adjacent tissues was observed. In a further group of animals, after time was allowed for the disease to develop in controls, the rats were killed and the level of maxillary molar alveolar bone was assessed. The bone loss in the animals treated with light and toluidine blue was found to be significantly less than that in the control groups. The results of this study show that toluidine blue-mediated lethal photosensitization of P. gingivalis is possible in vivo and that this results in decreased bone loss. These findings suggest that photodynamic therapy may be useful as an alternative approach for the antimicrobial treatment of periodontitis.

Journal ArticleDOI
TL;DR: The similarity of the Nal-resistant and -susceptible populations suggests that they derive from the same source population, presumably the avian fecal flora, with Nal resistance emerging by spontaneous mutation as a result of fluoroquinolone exposure.
Abstract: Fluoroquinolone use in poultry production may select for resistant Escherichia coli that can be transmitted to humans. To define the prevalence and virulence potential of poultry-associated, quinolone-resistant E. coli in the United States, 169 retail chicken products from the Minneapolis-St. Paul area (1999 to 2000) were screened for nalidixic acid (Nal)-resistant E. coli. Sixty-two (37%) products yielded Nal-resistant E. coli. From 55 products that yielded both Nal-resistant and susceptible E. coli, two isolates (one resistant, one susceptible) per sample were further characterized. Twenty-three (21%) of the 110 E. coli isolates (13 resistant, 10 susceptible) satisfied criteria for extraintestinal pathogenic E. coli (ExPEC), i.e., exhibited ≥2 of pap (P fimbriae), sfa/foc (S/F1C fimbriae), afa/dra (Dr binding adhesins), iutA (aerobactin receptor), and kpsMT II (group 2 capsule synthesis). Compared with other isolates, ExPEC isolates more often derived from virulence-associated E. coli phylogenetic groups B2 or D (74% versus 32%; P < 0.001) and exhibited more ExPEC-associated virulence markers (median, 10.0 versus 4.0; P < 0.001). In contrast, the Nal-resistant and -susceptible populations were indistinguishable according to all characteristics analyzed, including pulsed-field gel electrophoresis profiles. These findings indicate that Nal-resistant E. coli is prevalent in retail poultry products and that a substantial minority of such strains represent potential human pathogens. The similarity of the Nal-resistant and -susceptible populations suggests that they derive from the same source population, presumably the avian fecal flora, with Nal resistance emerging by spontaneous mutation as a result of fluoroquinolone exposure.

Journal ArticleDOI
TL;DR: The baseline susceptibilities prior to and shortly after the introduction of the NA inhibitors are established and there was no evidence of naturally occurring resistance to either drug in any of the isolates.
Abstract: The influenza virus neuraminidase (NA) inhibitors zanamivir and oseltamivir were introduced into clinical practice in various parts of the world between 1999 and 2002. In order to monitor the potential development of resistance, the Neuraminidase Inhibitor Susceptibility Network was established to coordinate testing of clinical isolates collected through the World Health Organization influenza surveillance network from different regions of the world (M. Zambon and F. G. Hayden, Antivir. Res. 49:147-156, 2001). The present study establishes the baseline susceptibilities prior to and shortly after the introduction of the NA inhibitors. Over 1000 clinical influenza isolates recovered from 1996 to 1999 were tested. Susceptibilities were determined by enzyme inhibition assays with chemiluminescent or fluorescent substrates with known NA inhibitor-resistant viruses as controls. The 50% inhibitory concentrations (IC(50)s) depended upon the assay method, the drug tested, and the influenza virus subtype. By both assays, the mean zanamivir IC(50)s were 0.76, 1.82, and 2.28 nM for the subtype H1N1 (N1), H3N2 (N2), and B NAs, respectively, and the oseltamivir IC(50)s were 1.2, 0.5, and 8.8 nM for the N1, N2, and B NAs, respectively. The drug susceptibilities of known zanamivir- and oseltamivir-resistant viruses with the NA mutations E119V, R292K, H274Y, and R152K fell well outside the 95% confidence limits of the IC(50)s for all natural isolates. Sequence analysis of the NAs of viruses for which the IC(50)s were above the 95% confidence limits and several control isolates for which the IC(50)s were in the normal range revealed variations in some previously conserved residues, including D151, A203, T225, and E375 (N2 numbering). Known resistance mutations are both influenza virus subtype and drug specific, but there was no evidence of naturally occurring resistance to either drug in any of the isolates.

Journal ArticleDOI
TL;DR: The colorimetric resazurin microtiter assay is inexpensive, rapid, and simple to perform, and implementation of the assay is feasible for low-resource countries.
Abstract: The emergence of multidrug-resistant tuberculosis calls for new, rapid drug susceptibility tests. We have tested 150 Mycobacterium tuberculosis isolates against the second-line drugs ethionamide, kanamycin, capreomycin, ofloxacin, and para-aminosalicylic acid by the colorimetric resazurin microtiter assay and the proportion method. By visual reading, MICs were obtained after 8 days. A very good correlation between results by the colorimetric resazurin microtiter assay and the proportion method was obtained. The colorimetric resazurin microtiter assay is inexpensive, rapid, and simple to perform, and implementation of the assay is feasible for low-resource countries.

Journal ArticleDOI
TL;DR: A new gene, sul3, which specifies a 263-amino-acid protein similar to a dihydropteroate synthase encoded by the 54-kb conjugative plasmid pVP440 from Escherichia coli was characterized and conferred resistance to sulfamethoxazole on E. coli.
Abstract: A new gene, sul3, which specifies a 263-amino-acid protein similar to a dihydropteroate synthase encoded by the 54-kb conjugative plasmid pVP440 from Escherichia coli was characterized. Expression of the cloned sul3 gene conferred resistance to sulfamethoxazole on E. coli. Two copies of the insertion element IS15Delta/26 flanked the region containing sul3. The sul3 gene was detected in one-third of the sulfonamide-resistant pathogenic E. coli isolates from pigs in Switzerland.

Journal ArticleDOI
TL;DR: The results indicate the practical utility of sensitizing bacteria to antimicrobials with sesquiterpenoids that have traditionally been used as flavorants and aroma compounds in the food and perfume industries.
Abstract: The sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone were investigated for their abilities to enhance bacterial permeability and susceptibility to exogenous antimicrobial compounds. Initially, it was observed by flow cytometry that these sesquiterpenoids promoted the intracellular accumulation of the membrane-impermeant nucleic acid stain ethidium bromide by live cells of Lactobacillus fermentum, suggesting that enhanced permeability resulted from disruption of the cytoplasmic membrane. The ability of these sesquiterpenoids to increase bacterial susceptibility to a number of clinically important antibiotics was then investigated. In disk diffusion assays, treatment with low concentrations (0.5 to 2 mM) of nerolidol, bisabolol, or apritone enhanced the susceptibility of Staphylococcus aureus to ciprofloxacin, clindamycin, erythromycin, gentamicin, tetracycline, and vancomycin. Nerolidol and farnesol also sensitized Escherichia coli to polymyxin B. Our results indicate the practical utility of sensitizing bacteria to antimicrobials with sesquiterpenoids that have traditionally been used as flavorants and aroma compounds in the food and perfume industries.

Journal ArticleDOI
TL;DR: Surprisingly, lysostaphin not only killed S. aureus in biofilms but also disrupted the extracellular matrix of S.aureus bio Films in vitro on plastic and glass surfaces at concentrations as low as 1 μg/ml.
Abstract: Staphylococci often form biofilms, sessile communities of microcolonies encased in an extracellular matrix that adhere to biomedical implants or damaged tissue. Infections associated with biofilms are difficult to treat, and it is estimated that sessile bacteria in biofilms are 1,000 to 1,500 times more resistant to antibiotics than their planktonic counterparts. This antibiotic resistance of biofilms often leads to the failure of conventional antibiotic therapy and necessitates the removal of infected devices. Lysostaphin is a glycylglycine endopeptidase which specifically cleaves the pentaglycine cross bridges found in the staphylococcal peptidoglycan. Lysostaphin kills Staphylococcus aureus within minutes (MIC at which 90% of the strains are inhibited [MIC(90)], 0.001 to 0.064 microg/ml) and is also effective against Staphylococcus epidermidis at higher concentrations (MIC(90), 12.5 to 64 microg/ml). The activity of lysostaphin against staphylococci present in biofilms compared to those of other antibiotics was, however, never explored. Surprisingly, lysostaphin not only killed S. aureus in biofilms but also disrupted the extracellular matrix of S. aureus biofilms in vitro on plastic and glass surfaces at concentrations as low as 1 microg/ml. Scanning electron microscopy confirmed that lysostaphin eradicated both the sessile cells and the extracellular matrix of the biofilm. This disruption of S. aureus biofilms was specific for lysostaphin-sensitive S. aureus, as biofilms of lysostaphin-resistant S. aureus were not affected. High concentrations of oxacillin (400 microg/ml), vancomycin (800 microg/ml), and clindamycin (800 microg/ml) had no effect on the established S. aureus biofilms in this system, even after 24 h. Higher concentrations of lysostaphin also disrupted S. epidermidis biofilms.

Journal ArticleDOI
Rachel Courtney1, Sudhakar Pai1, Mark Laughlin1, Josephine Lim1, Vijay Batra1 
TL;DR: The long elimination-phase half-life of posaconazole supports once- or twice-daily dosing in clinical trials; however, additional studies are required to determine if further division of the dose will enhance exposure.
Abstract: The pharmacokinetics, safety, and tolerability of posaconazole, an investigational triazole antifungal, were evaluated following the administration of rising single and multiple oral doses. A total of 103 healthy adults were enrolled in two phase I trials. Each study had a double-blind, placebo-controlled, parallel-group design with a rising single-dose (RSD) or rising multiple-dose (RMD) scheme. In the RSD study, subjects received single doses of posaconazole oral tablets (50 to 1,200 mg) or placebo. In the RMD study, subjects received posaconazole oral tablets (50 to 400 mg) or placebo twice daily for 14 days. By using model-independent methods, the area under the plasma concentration-time curve and the maximum concentration in plasma were determined and used to assess dose proportionality. In the RSD study, the levels of posaconazole in plasma increased proportionally between the 50- and 800-mg dose range, with saturation of absorption occurring above 800 mg. Dose proportionality was also observed in the RMD study. In both studies, the apparent volume of distribution was large (range, 343 to 1,341 liters) and the terminal-phase half-life was long (range, 25 to 31 h). Posaconazole was well tolerated at all dose levels, and the adverse events were not dose dependent. No clinically significant changes in clinical laboratory test values or electrocardiograms were observed. Following the administration of single and twice-daily rising doses, the level of posaconazole exposure increased in a dose-proportional manner. The long elimination-phase half-life of posaconazole supports once- or twice-daily dosing in clinical trials; however, additional studies are required to determine if further division of the dose will enhance exposure.

Journal ArticleDOI
TL;DR: In this paper, the authors sequenced the entire ethA structural gene of 41 ETH-resistant Mycobacterium tuberculosis isolates and determined the MICs of these MICs in order to associate the mutations identified with a resistance phenotype.
Abstract: Ethionamide (ETH) is a structural analog of the antituberculosis drug isoniazid (INH). Both of these drugs target InhA, an enzyme involved in mycolic acid biosynthesis. INH requires catalase-peroxidase (KatG) activation, and mutations in katG are a major INH resistance mechanism. Recently an enzyme (EthA) capable of activating ETH has been identified. We sequenced the entire ethA structural gene of 41 ETH-resistant Mycobacterium tuberculosis isolates. We also sequenced two regions of inhA and all or part of katG. The MICs of ETH and INH were determined in order to associate the mutations identified with a resistance phenotype. Fifteen isolates were found to possess ethA mutations, for all of which the ETH MICs were > or =50 microg/ml. The ethA mutations were all different, previously unreported, and distributed throughout the gene. In eight of the isolates, a missense mutation in the inhA structural gene occurred. The ETH MICs for seven of the InhA mutants were > or =100 microg/ml, and these isolates were also resistant to > or =8 microg of INH per ml. Only a single point mutation in the inhA promoter was identified in 14 isolates. A katG mutation occurred in 15 isolates, for which the INH MICs for all but 1 were > or =32 microg/ml. As expected, we found no association between katG mutation and the level of ETH resistance. Mutations within the ethA and inhA structural genes were associated with relatively high levels of ETH resistance. Approximately 76% of isolates resistant to > or =50 microg of ETH per ml had such mutations.