scispace - formally typeset
Search or ask a question

Showing papers in "Apoptosis in 2014"


Journal ArticleDOI
TL;DR: The crucial factors governing the crosstalk between autophagy and apoptosis are highlighted and the mechanisms controlling cell survival and cell death are described.
Abstract: Autophagy and apoptosis are two important cellular processes with complex and intersecting protein networks; as such, they have been the subjects of intense investigation. Recent advances have elucidated the key players and their molecular circuitry. For instance, the discovery of Beclin-1’s interacting partners has resulted in the identification of Bcl-2 as a central regulator of autophagy and apoptosis, which functions by interacting with both Beclin-1 and Bax/Bak respectively. When localized to the endoplasmic reticulum and mitochondria, Bcl-2 inhibits autophagy. Cellular stress causes the displacement of Bcl-2 from Beclin-1 and Bax, thereby triggering autophagy and apoptosis, respectively. The induction of autophagy or apoptosis results in disruption of complexes by BH3-only proteins and through post-translational modification. The mechanisms linking autophagy and apoptosis are not fully defined; however, recent discoveries have revealed that several apoptotic proteins (e.g., PUMA, Noxa, Nix, Bax, XIAP, and Bim) modulate autophagy. Moreover, autophagic proteins that control nucleation and elongation regulate intrinsic apoptosis through calpain- and caspase-mediated cleavage of autophagy-related proteins, which switches the cellular program from autophagy to apoptosis. Similarly, several autophagic proteins are implicated in extrinsic apoptosis. This highlights a dual cellular role for autophagy. On one hand, autophagy degrades damaged mitochondria and caspases, and on the other hand, it provides a membrane-based intracellular platform for caspase processing in the regulation of apoptosis. In this review, we highlight the crucial factors governing the crosstalk between autophagy and apoptosis and describe the mechanisms controlling cell survival and cell death.

472 citations


Journal ArticleDOI
TL;DR: It is demonstrated that BBR exerts anti-apoptotic effect and improves cardiac functional recovery following myocardial I/R via activating AMPK and PI3K–Akt–eNOS signaling in diabetic rats.
Abstract: Diabetes increases the risk of cardiovascular diseases. Berberine (BBR), an isoquinoline alkaloid used in Chinese medicine, exerts anti-diabetic effect by lowering blood glucose and regulating lipid metabolism. It has been reported that BBR decreases mortality in patients with chronic congestive heart failure. However, the molecular mechanisms of these beneficial effects are incompletely understood. In the present study, we sought to determine whether BBR exerts cardioprotective effect against ischemia/reperfusion (I/R) injury in diabetic rats and the underlying mechanisms. Male Sprague-Dawley rats were injected with low dose streptozotocin and fed with a high-fat diet for 12 weeks to induce diabetes. The diabetic rats were intragastrically administered with saline or BBR (100, 200 and 400 mg/kg/d) starting from week 9 to 12. At the end of week 12, all rats were subjected to 30 min of myocardial ischemia and 3 h of reperfusion. BBR significantly improved the recovery of cardiac systolic/diastolic function and reduced myocardial apoptosis in diabetic rats subjected to myocardial I/R. Furthermore, in cultured neonatal rat cardiomyocytes, BBR (50 μmol/L) reduced hypoxia/reoxygenation-induced myocardial apoptosis, increased Bcl-2/Bax ratio and decreased caspase-3 expression, together with enhanced activation of PI3K–Akt and increased adenosine monophosphate-activated protein kinase (AMPK) and eNOS phosphorylation. Pretreatment with either PI3K/Akt inhibitor wortmannin or AMPK inhibitor Compound C blunted the anti-apoptotic effect of BBR. Our findings demonstrate that BBR exerts anti-apoptotic effect and improves cardiac functional recovery following myocardial I/R via activating AMPK and PI3K–Akt–eNOS signaling in diabetic rats.

141 citations


Journal ArticleDOI
TL;DR: Investigation of piperlongumine (PPLGM), a natural alkaloid on PI3 K/Akt/mTOR signaling, Akt mediated regulation of NF-kB and apoptosis evasion in human breast cancer cells suggests that PPLGM may be an effective therapeutic agent for the treatment of human triple negative breast cancer.
Abstract: The phosphatidylinositol 3-kinase (PI3 K)/Akt/mammalian target of rapamycin (mTOR) signaling axis plays a central role in cell proliferation, growth and survival under physiological conditions. However, aberrant PI3 K/Akt/mTOR signaling has been implicated in many human cancers, including human triple negative breast cancer. Therefore, dual inhibitors of PI3 K/Akt and mTOR signaling could be valuable agents for treating breast cancer. The objective of this study was to investigate the effect of piperlongumine (PPLGM), a natural alkaloid on PI3 K/Akt/mTOR signaling, Akt mediated regulation of NF-kB and apoptosis evasion in human breast cancer cells. Using molecular docking studies, we found that PPLGM physically interacts with the conserved domain of PI3 K and mTOR kinases and the results were comparable with standard dual inhibitor PF04691502. Our results demonstrated that treatment of different human triple-negative breast cancer cells with PPLGM resulted in concentration- and time-dependent growth inhibition. The inhibition of cancer cell growth was associated with G1-phase cell cycle arrest and down-regulation of the NF-kB pathway leads to activation of the mitochondrial apoptotic pathway. It was also found that PPLGM significantly decreased the expression of p-Akt, p70S6K1, 4E-BP1, cyclin D1, Bcl-2, p53 and increased expression of Bax, cytochrome c in human triple-negative breast cancer cells. Although insulin treatment increased the phosphorylation of Akt (Ser473), p70S6K1, 4E-BP1, PPLGM abolished the insulin mediated phosphorylation, it clearly indicates that PPLGM acts through PI3 k/Akt/mTOR axis. Our results suggest that PPLGM may be an effective therapeutic agent for the treatment of human triple negative breast cancer.

118 citations


Journal ArticleDOI
TL;DR: Novel insights are provided into the mechanism of cytotoxicity and even pathogenesis of diseases associated with PM2.5 exposure and reactive oxygen species (ROS) function as signaling molecules for all the three pathways.
Abstract: Our group was the first one reporting that autophagy could be triggered by airborne fine particulate matter (PM) with a mean diameter of less than 2.5 μm (PM2.5) in human lung epithelial A549 cells, which could potentially lead to cell death. In the present study, we further explored the potential interactions between autophagy and apoptosis because it was well documented that PM2.5 could induce apoptosis in A549 cells. Much to our surprise, we found that PM2.5-exposure caused oxidative stress, resulting in activation of multiple cell death pathways in A549 cells, that is, the tumor necrosis factor-alpha (TNF-α)-induced pathway as evidenced by TNF-α secretion and activation of caspase-8 and -3, the intrinsic apoptosis pathway as evidenced by increased expression of pro-apoptotic protein Bax, decreased expression of anti-apoptotic protein Bcl-2, disruption of mitochondrial membrane potential, and activation of caspase-9 and -3, and autophagy as evidenced by an increased number of double-membrane vesicles, accompanied by increases of conversion and punctuation of microtubule-associated proteins light chain 3 (LC3) and expression of Beclin 1. It appears that reactive oxygen species (ROS) function as signaling molecules for all the three pathways because pretreatment with N-acetylcysteine, a scavenger of ROS, almost completely abolished TNF-α secretion and significantly reduced the number of apoptotic and autophagic cells. In another aspect, inhibiting autophagy with 3-methyladenine, a specific autophagy inhibitor, enhanced PM2.5-induced apoptosis and cytotoxicity. Intriguingly, neutralization of TNF-α with an anti-TNF-α special antibody not only abolished activation of caspase-8, but also drastically reduced LC3-II conversion. Thus, the present study has provided novel insights into the mechanism of cytotoxicity and even pathogenesis of diseases associated with PM2.5 exposure.

116 citations


Journal ArticleDOI
TL;DR: Results suggest that the PERK pathway of the UPR is involved in GD-induced apoptotic neuronal death through the activation of caspase-12, rather than the mitochondrial-dependent caspases pathway.
Abstract: Glucose is the main energy source in brain and it is critical for correct brain functioning. Type 1 diabetic patients might suffer from severe hypoglycemia if exceeding insulin administration, which can lead to acute brain injury if not opportunely corrected. The mechanisms leading to hypoglycemic brain damage are not completely understood and the role of endoplasmic reticulum (ER) stress has not been studied. ER stress resulting from the accumulation of unfolded or misfolded proteins in the ER is counteracted by the unfolded protein response (UPR). When the UPR is sustained, apoptotic death might take place. We have examined UPR activation during glucose deprivation (GD) in hippocampal cultured neurons and its role in the induction of apoptosis. Activation of the PERK pathway of the UPR was observed, as increased phosphorylation of eIF2α and elevated levels of the transcription factor ATF4, occurred 30 min after GD and the levels of the chaperone protein, GRP78 and the transcription factor CHOP, increased after 2 h of GD. In addition, we observed an early activation of caspase-7 and 12 during GD, while caspase-3 activity increased only transiently during glucose reintroduction. Inhibition of caspase-3/7 and the calcium-dependent protease, calpain, significantly decreased caspase-12 activity. The ER stress inhibitor, salubrinal prevented neuronal death and caspase-12 activity. Results suggest that the PERK pathway of the UPR is involved in GD-induced apoptotic neuronal death through the activation of caspase-12, rather than the mitochondrial-dependent caspase pathway. In addition, we show that calpain and caspase-7 are soon activated after GD and mediate caspase-12 activation and neuronal death.

99 citations


Journal ArticleDOI
TL;DR: Examination of the signaling pathways underlying the apoptotic activity of capsaicin in human small cell lung cancer (SCLC) in vitro and in vivo provides insights into the mechanism underlying the programmed death of Capsaicin.
Abstract: Capsaicin, the pungent ingredient of chili peppers, displays potent anti-neoplastic activity in a wide array of human cancer cells. The present manuscript examines the signaling pathways underlying the apoptotic activity of capsaicin in human small cell lung cancer (SCLC) in vitro and in vivo. Studies in neuronal cells show that capsaicin exerts its biological activity via the transient receptor potential vanilloid (TRPV) superfamily of cation-channel receptors. The TRPV family is comprised of six members (TRPV1-6). Capsaicin is a known agonist of the TRPV1 receptor. We observed that capsaicin-induced apoptosis in human SCLC cells was mediated via the TRPV receptor family; however it was independent of TRPV1. Surprisingly, the apoptotic activity of capsaicin required the TRPV6 receptor. Depletion of TRPV6 receptor by siRNA methodology abolished the apoptotic activity of capsaicin in SCLC cells. Immunostaining and ELISA showed that TRPV6 receptor was robustly expressed on human SCLC tissues (from patients) and SCLC cell lines but almost absent in normal lung tissues. This correlates with our results that capsaicin induced very little apoptosis in normal lung epithelial cells. The pro-apoptotic activity of capsaicin was mediated by the intracellular calcium and calpain pathway. The treatment of human SCLC cells with capsaicin increased the activity of calpain 1 and 2 by threefold relative to untreated SCLC cells. Such calpain activation, in response to capsaicin, was downstream of the TRPV6 receptor. Taken together, our data provide insights into the mechanism underlying the apoptotic activity of capsaicin in human SCLCs.

96 citations


Journal ArticleDOI
TL;DR: The DAPK family is introduced, and a structure/function analysis for each individual member, and for the family as a whole is presented, with emphasis on the various domains, and how they mediate interactions with additional proteins and/or regulation of kinase function.
Abstract: DAP-kinase (DAPK) is the founding member of a family of highly related, death associated Ser/Thr kinases that belongs to the calmodulin (CaM)-regulated kinase superfamily. The family includes DRP-1 and ZIP-kinase (ZIPK), both of which share significant homology within the common N-terminal kinase domain, but differ in their extra-catalytic domains. Both DAPK and DRP-1 possess a conserved CaM autoregulatory domain, and are regulated by calcium-activated CaM and by an inhibitory auto-phosphorylation within the domain. ZIPK's activity is independent of CaM but can be activated by DAPK. The three kinases share some common functions and substrates, such as induction of autophagy and phosphorylation of myosin regulatory light chain leading to membrane blebbing. Furthermore, all can function as tumor suppressors. However, they also each possess unique functions and intracellular localizations, which may arise from the divergence in structure in their respective C-termini. In this review we will introduce the DAPK family, and present a structure/function analysis for each individual member, and for the family as a whole. Emphasis will be placed on the various domains, and how they mediate interactions with additional proteins and/or regulation of kinase function.

86 citations


Journal ArticleDOI
TL;DR: The data indicated that 12/15-LOX inhibitor baicalein can prevent myocardial I/R injury by modulation of multiple mechanisms, and suggest that baicalsein could represent a novel therapeutic drug for acute myocardIAL infarction.
Abstract: 12/15-Lipoxygenase (LOX) is a member of the LOX family that catalyzes the step from arachidonic acid to hydroxy-eicosatetraenoic acids (HETEs). Previous studies demonstrated that 12/15-LOX plays a critical role in the development of atherosclerosis, hypertension, heart failure, and other diseases; however, its role in myocardial ischemic injury was contraversal. Here, we investigated the inhibition of 12/15-LOX by baicalein on acute cardiac injury and dissected its molecular mechanism. In a mouse model of acute ischemia/reperfusion (I/R) injury, 12/15-LOX was significantly upregulated in the peri-infarct area surrounding the primary infarction. In cultured cardiac myocytes, baicalein suppressed apoptosis and caspase 3 activity in response to simulated ischemia/reperfusion (I/R). Moreover, administration of 12/15-LOX inhibitor, baicalein, significantly attenuated myocardial infarct size induced by I/R injury. Moreover, baicalein treatment significantly inhibited cardiomyocyte apoptosis, inflammatory responses and oxidative stress in the heart after I/R injury. The mechanisms underlying these effects were associated with the activation of ERK1/2 and AKT pathways and inhibition of activation of p38 MAPK, JNK1/2, and NF-kB/p65 pathways in the I/R-treated hearts and neonatal cardiomyoctes. Our data indicated that 12/15-LOX inhibitor baicalein can prevent myocardial I/R injury by modulation of multiple mechanisms, and suggest that baicalein could represent a novel therapeutic drug for acute myocardial infarction.

80 citations


Journal ArticleDOI
TL;DR: It is indicated that further study is warranted to determine the effectiveness of combination treatment with cisplatin and Jak2/stat3 pathway inhibitor for platinum-resistant NSCLC.
Abstract: This study was aimed to elucidate the roles of inhibition of related JAK/STAT pathways in regulating cytotoxicity induced by cisplatin in non-small-cell lung cancer (NSCLC) cell. We treated five non-small-cell lung cancer cell lines with cisplatin alone or with cisplatin and Jak2 inhibitor (ruxolitinib) and assessed cell viability, expression of Jak2 and STAT3 and cell apoptosis. We also investigated the effect of combination treatment inhibited tumor xenograft growth in two human NSCLC xenograft models bearing the cisplatin resistant (H1299) and sensitive (A549) cells. Different cell lines with different genetic background showed half-maximal inhibitory concentrations (IC50) of cisplatin from 4.66 to 68.28 µmol/L. They could be divided into cisplatin intrinsic resistant and cisplatin sensitive cell lines. In cisplatin-resistant cells with higher Jak2 and STAT3 expression, cisplatin and ruxolitinib combination dramatically suppressed the cell growth, down-regulated the expression of phosphorylated STAT3 and induced cleaved caspase-3 expression. Moreover combination with cisplatin and ruxolitinib also significantly inhibited the growth of resistant cell H1299, A549/DDP and H2347 in soft agar model. Finally, combination group significant inhibited the tumor growth and induced the caspase-3 expression compared with either single agent alone (P < 0.05) on the resistant cell xenografts model. The present study indicates that further study is warranted to determine the effectiveness of combination treatment with cisplatin and Jak2/stat3 pathway inhibitor for platinum-resistant NSCLC.

80 citations


Journal ArticleDOI
TL;DR: The results suggest that apigenin targets inhibitor of apoptotic proteins and Ku70–Bax interaction in the induction of apoptosis in prostate cancer cells and in athymic nude mouse xenograft model endorsing its in vivo efficacy.
Abstract: Dysfunction of the apoptotic pathway in prostate cancer cells confers apoptosis resistance towards various therapies. A novel strategy to overcome resistance is to directly target the apoptotic pathway in cancer cells. Apigenin, an anticancer agent, selectively toxic to cancer cells induces cell cycle arrest and apoptosis through mechanisms which are not fully explored. In the present study we provide novel insight into the mechanisms of apoptosis induction by apigenin. Treatment of androgen-refractory human prostate cancer PC-3 and DU145 cells with apigenin resulted in dose-dependent suppression of XIAP, c-IAP1, c-IAP2 and survivin protein levels. Apigenin treatment resulted in significant decrease in cell viability and apoptosis induction with the increase of cytochrome C in time-dependent manner. These effects of apigenin were accompanied by decrease in Bcl-xL and Bcl-2 and increase in the active form of Bax protein. The apigenin-mediated increase in Bax was due to dissociation of Bax from Ku70 which is essential for apoptotic activity of Bax. Apigenin treatment resulted in the inhibition of class I histone deacetylases and HDAC1 protein expression, thereby increasing the acetylation of Ku70 and the dissociation of Bax resulting in apoptosis of cancer cells. Furthermore, apigenin significantly reduced HDAC1 occupancy at the XIAP promoter, suggesting that histone deacetylation might be critical for XIAP downregulation. These results suggest that apigenin targets inhibitor of apoptosis proteins and Ku70–Bax interaction in the induction of apoptosis in prostate cancer cells and in athymic nude mouse xenograft model endorsing its in vivo efficacy.

80 citations


Journal ArticleDOI
TL;DR: It is shown, for the first time, that the down-regulation of eEF-2K leads to induction of intrinsic, extrinsic as well as AIF-dependent apoptosis in PaCa cells, suggesting that eEF -2K may represent an attractive therapeutic target for the future anticancer agents in Pa Ca.
Abstract: Pancreatic cancer (PaCa) is one of the most aggressive, apoptosis-resistant and currently incurable cancers with a poor survival rate. Eukaryotic elongation factor-2 kinase (eEF-2K) is an atypical kinase, whose role in PaCa survival is not yet known. Here, we show that eEF-2K is overexpressed in PaCa cells and its down-regulation induces apoptotic cell death. Rottlerin (ROT), a polyphenolic compound initially identified as a PKC-δ inhibitor, induces apoptosis and autophagy in a variety of cancer cells including PaCa cells. We demonstrated that ROT induces intrinsic apoptosis, with dissipation of mitochondrial membrane potential (ΔΨm), and stimulates extrinsic apoptosis with concomitant induction of TNF-related apoptosis inducing ligand (TRAIL) receptors, DR4 and DR5, with caspase-8 activation, in PANC-1 and MIAPaCa-2 cells. Notably, while none of these effects were dependent on PKC-δ inhibition, ROT down-regulates eEF-2K at mRNA level, and induce eEF-2K protein degradation through ubiquitin–proteasome pathway. Down-regulation of eEF-2K recapitulates the events observed after ROT treatment, while its over-expression suppressed the ROT-induced apoptosis. Furthermore, eEF-2K regulates the expression of tissue transglutaminase (TG2), an enzyme previously implicated in proliferation, drug resistance and survival of cancer cells. Inhibition of eEF-2K/TG2 axis leads to caspase-independent apoptosis which is associated with induction of apoptosis-inducing factor (AIF). Collectively, these results indicate, for the first time, that the down-regulation of eEF-2K leads to induction of intrinsic, extrinsic as well as AIF-dependent apoptosis in PaCa cells, suggesting that eEF-2K may represent an attractive therapeutic target for the future anticancer agents in PaCa.

Journal ArticleDOI
TL;DR: Results indicate that NEFAs activate the ROS–p38–p53/Nrf2 signaling pathway to induce apoptotic damage in bovine hepatocytes.
Abstract: A high plasma concentration of non-esterified fatty acids (NEFAs) is an important pathogenic factor that leads to ketosis and fatty liver in dairy cows. NEFAs may be associated with oxidative stress in dairy cows with ketosis or fatty liver and the subsequent induction of hepatocyte damage. However, the molecular mechanism of NEFAs-induced oxidative stress and whether NEFAs cause apoptosis of hepatocytes are unclear. Therefore, the aim of this study was to investigate the molecular mechanism of NEFAs-induced oxidative liver damage in bovine hepatocytes. The results showed that NEFAs increased oxidative stress, resulting in p38 phosphorylation. High activated p38 increased the expression, nuclear localization and transcriptional activity of p53 and decreased the nuclear localization and transcriptional activity of Nrf2 in bovine hepatocytes treated with high concentrations of NEFAs. High concentrations of NEFAs also promoted the apoptosis of bovine hepatocytes. Both N-acetyl-L-cysteine (NAC) and glucose (GLU) could attenuate the NEFA-induced apoptotic damage. These results indicate that NEFAs activate the ROS-p38-p53/Nrf2 signaling pathway to induce apoptotic damage in bovine hepatocytes.

Journal ArticleDOI
TL;DR: Results suggest that autophagy may serve as a protection against apoptosis in mechanically-injured spinal cord neurons and targeting mTOR and/or enhancing Beclin-1 expression might be alternative therapeutic strategies for SCI.
Abstract: Apoptosis has been widely reported to be involved in the pathogenesis associated with spinal cord injury (SCI). Recently, autophagy has also been implicated in various neuronal damage models. However, the role of autophagy in SCI is still controversial and its interrelationship with apoptosis remains unclear. Here, we used an in vitro SCI model to observe a time-dependent induction of autophagy and apoptosis. Mechanical injury induced autophagy markers such as LC3 lipidation, LC3II/LC3I conversion, and Beclin-1expression. Injured neurons showed decreased cell viability and increased apoptosis. To elucidate the effect of autophagy on apoptosis, the mechanically-injured neurons were treated with the mTOR inhibitor rapamycin and 3-methyl adenine (3-MA), which are known to regulate autophagy positively and negatively, respectively. Rapamycin-treated neurons showed the highest level of cell viability and lowest level of apoptosis among the injured neurons and those treated with 3-MA showed the reciprocal effect. Notably, rapamycin-treated neurons exhibited slightly reduced Bax expression and significantly increasedBcl-2 expression. Furthermore, by plasmid transfection, we showed that Beclin-1-overexpressing neuronal cells responded to mechanical injury with greater LC3II/LC3I conversion and cell viability, lower levels of apoptosis, higher Bcl-2 expression, and unaltered Bax expression as compared to vector control cells. Beclin-1-knockdown neurons showed almost the opposite effects. Taken together, our results suggest that autophagy may serve as a protection against apoptosis in mechanically-injured spinal cord neurons. Targeting mTOR and/or enhancing Beclin-1 expression might be alternative therapeutic strategies for SCI.

Journal ArticleDOI
TL;DR: It is demonstrated that a limited number of oncogenic/tumor suppressive miRNAs could regulate apoptosis and autophagy, respectively, and cooperative, and cooperatively, and taken together would provide a new clue to elucidate more apoptotic and/or autophagic mechanisms of miRNA for designing potential novel therapeutic strategies in cancer.
Abstract: MicroRNAs (miRNAs), small and non-coding endogenous RNAs ∼22 nucleotides (nt) in length, have been known to regulate approximately 30 % of human gene expression at the post-transcriptional and translational levels. Accumulating data have demonstrated that certain miRNAs could exert an oncogenic and/or tumor suppressive function and might play essential roles in the regulation of apoptosis and autophagy in cancer. In this review, we summarize that certain oncogenic and tumor suppressive miRNAs could modulate apoptotic pathways in different types of cancer. Subsequently, we demonstrate that other miRNAs might play regulatory roles in the autophagic pathways of cancer. A limited number of oncogenic/tumor suppressive miRNAs could regulate apoptosis and autophagy, respectively, and cooperatively. Taken together, these findings would provide a new clue to elucidate more apoptotic and/or autophagic mechanisms of miRNAs for designing potential novel therapeutic strategies in cancer.

Journal ArticleDOI
TL;DR: Results demonstrated that bufalin markedly inhibited cell proliferation and promoted apoptosis in the Huh-7 and HepG-2 cells in vitro, and indicated that combining bufalin with a specific autophagy inhibitor could be a promising therapeutic approach for the treatment of HCC.
Abstract: Bufalin extracts are a part of traditional Chinese medicine, Chansu. In the current study, we investigated the effect of bufalin on the proliferation of the human hepatocellular carcinoma (HCC) cell lines, Huh-7 and HepG-2, and explored the therapeutic potential of the drug. Our results demonstrated that bufalin markedly inhibited cell proliferation and promoted apoptosis in the Huh-7 and HepG-2 cells in vitro. The underlying mechanism of the bufalin-induced apoptosis was the induction of endoplasmic reticulum (ER) stress via the IRE1–JNK pathway. In addition, during the ER stress response, the autophagy pathway, characterized by the conversion of LC3-I to LC3-II, was activated, resulting in increased Beclin-1 protein levels, decreased p62 expression and stimulation of autophagic flux. Our data supported the pro-survival role of bufalin-induced autophagy when the autophagy pathway was blocked with specific chemical inhibitors; the involvement of the IRE1 pathway in the ER stress-induced autophagy was also demonstrated when the expression of IRE1 and CHOP was silenced using siRNA. These data indicate that combining bufalin with a specific autophagy inhibitor could be a promising therapeutic approach for the treatment of HCC.

Journal ArticleDOI
TL;DR: In this article, a diet supplemented with CoQ10 ameliorates oxidative stress and mitochondrial alteration, as well as promotes retinal ganglion cell (RGC) survival in ischemic retina induced by intraocular pressure elevation.
Abstract: Coenzyme Q10 (CoQ10) acts by scavenging reactive oxygen species for protecting neuronal cells against oxidative stress in neurodegenerative diseases. We tested whether a diet supplemented with CoQ10 ameliorates oxidative stress and mitochondrial alteration, as well as promotes retinal ganglion cell (RGC) survival in ischemic retina induced by intraocular pressure elevation. A CoQ10 significantly promoted RGC survival at 2 weeks after ischemia. Superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) expression were significantly increased at 12 h after ischemic injury. In contrast, the CoQ10 significantly prevented the upregulation of SOD2 and HO-1 protein expression in ischemic retina. In addition, the CoQ10 significantly blocked activation of astroglial and microglial cells in ischemic retina. Interestingly, the CoQ10 blocked apoptosis by decreasing caspase-3 protein expression in ischemic retina. Bax and phosphorylated Bad (pBad) protein expression were significantly increased in ischemic retina at 12 h. Interestingly, while CoQ10 significantly decreased Bax protein expression in ischemic retina, CoQ10 showed greater increase of pBad protein expression. Of interest, ischemic injury significantly increased mitochondrial transcription factor A (Tfam) protein expression in the retina at 12 h, however, CoQ10 significantly preserved Tfam protein expression in ischemic retina. Interestingly, there were no differences in mitochondrial DNA content among control- or CoQ10-treated groups. Our findings demonstrate that CoQ10 protects RGCs against oxidative stress by modulating the Bax/Bad-mediated mitochondrial apoptotic pathway as well as prevents mitochondrial alteration by preserving Tfam protein expression in ischemic retina. Our results suggest that CoQ10 may provide neuroprotection against oxidative stress-mediated mitochondrial alterations in ischemic retinal injury.

Journal ArticleDOI
TL;DR: Investigation of the radio-protective role of Isofraxidin, a Coumarin compound, in human leukemia cell lines for the first time shows that it protects leukemia cells from radiation-induced apoptosis via ROS/mitochondria pathway in a p53-independent manner.
Abstract: Ionizing radiation (IR) leads to oxidizing events such as excessive reactive oxygen species (ROS) in the exposed cells, resulting in further oxidative damage to lipids, proteins and DNA. To screen the potential radio-protective drug, the intracellular ROS was measured in irradiated U937 cells pretreated with 80 candidate traditional herbal medicine, respectively. Isofraxidin (IF) was one possible radio-protector in these 80 drugs. This study investigated the radio-protective role of IF, a Coumarin compound, in human leukemia cell lines, for the first time. Results indicate that IF protects against IR-induced apoptosis in U937 cells in the time- and concentration- dependent manner. IF decreases IR-induced intracellular ROS generation, especially hydroxyl radicals formation, inhibits IR-induced mitochondrial membrane potential loss and reduces IR-induced high intracellular Ca(2+) levels regardless of ER stress. IF down-regulates the expression of caspase-3, phospho-JNK, phospho-p38 and activates Bax in mitochondria. IF inhibits cytochrome c release from mitochondria to cytosol. IF also moderates IR-induced Fas externalization and caspase-8 activation. IF also exhibits significant protection against IR-induced cell death in other leukemia cell lines such as Molt-4 cells and HL60 cells regardless of p53. Taken together, the data demonstrate that IF protects leukemia cells from radiation-induced apoptosis via ROS/mitochondria pathway in a p53-independent manner.

Journal ArticleDOI
Yang Yu1, Yuan Deng1, Bang-min Lu1, Yong-xi Liu1, Jian Li2, Jinku Bao1 
TL;DR: The biological properties of green tea catechins and the molecular mechanisms of their anticancer effects, including the suppression of cancer cell proliferation, induction of apoptosis, and inhibition of tumor metastasis and angiogenesis are reviewed.
Abstract: Green tea catechins have been extensively studied for their cancer preventive effects. Accumulating evidence has shown that green tea catechins, like (−)-epigallocatechin-3-gallate, have strong anti-oxidant activity and affect several signal transduction pathways relevant to cancer development. Here, we review the biological properties of green tea catechins and the molecular mechanisms of their anticancer effects, including the suppression of cancer cell proliferation, induction of apoptosis, and inhibition of tumor metastasis and angiogenesis. We summarize the efficacy of a single catechin and the synergetic effects of multiple catechins. We also discuss the enhanced anticancer effects of green tea catechins when they are combined with anticancer drugs. The information present in this review might promote the development of strategy for the co-administration of green tea catechins with other anticancer drugs to increase the potency of currently available anticancer medicine. This new strategy should in turn lower the cytotoxicity and cost of anticancer treatment.

Journal ArticleDOI
TL;DR: Cryptotanshinone, a natural compound isolated from Salvia miltiorrhiza, robustly activated AMPK signaling pathway, including LKB1, p53, TSC2, thereby leading to suppression of mTORC1 in a number of LKB-expressing cancer cells including HepG2 human hepatoma, but not in LKB 1-deficient cancer cells.
Abstract: AMP-activated protein kinase (AMPK) performs a pivotal function in energy homeostasis via the monitoring of intracellular energy status. Once activated under the various metabolic stress conditions, AMPK regulates a multitude of metabolic pathways to balance cellular energy. In addition, AMPK also induces cell cycle arrest or apoptosis through several tumor suppressors including LKB1, TSC2, and p53. LKB1 is a direct upstream kinase of AMPK, while TSC2 and p53 are direct substrates of AMPK. Therefore, it is expected that activators of AMPK signal pathway might be useful for treatment or prevention of cancer. In the present study, we report that cryptotanshinone, a natural compound isolated from Salvia miltiorrhiza, robustly activated AMPK signaling pathway, including LKB1, p53, TSC2, thereby leading to suppression of mTORC1 in a number of LKB1-expressing cancer cells including HepG2 human hepatoma, but not in LKB1-deficient cancer cells. Cryptotanshinone induced HepG2 cell cycle arrest at the G1 phase in an AMPK-dependent manner, and a portion of cells underwent apoptosis as a result of long-term treatment. It also induced autophagic HepG2 cell death in an AMPK-dependent manner. Cryptotanshinone significantly attenuated tumor growth in an HCT116 cancer xenograft in vivo model, with a substantial activation of AMPK signal pathways. Collectively, we demonstrate for the first time that cryptotanshinone harbors the therapeutic potential for the treatment of cancer through AMPK activation.

Journal ArticleDOI
TL;DR: DAPK positively contributes to the induction stage of autophagosome nucleation by modulating the Vps34 class III phosphatidyl inositol 3-kinase complex by two independent mechanisms.
Abstract: DAP-kinase (DAPK) is a Ca(2+)-calmodulin regulated kinase with various, diverse cellular activities, including regulation of apoptosis and caspase-independent death programs, cytoskeletal dynamics, and immune functions. Recently, DAPK has also been shown to be a critical regulator of autophagy, a catabolic process whereby the cell consumes cytoplasmic contents and organelles within specialized vesicles, called autophagosomes. Here we present the latest findings demonstrating how DAPK modulates autophagy. DAPK positively contributes to the induction stage of autophagosome nucleation by modulating the Vps34 class III phosphatidyl inositol 3-kinase complex by two independent mechanisms. The first involves a kinase cascade in which DAPK phosphorylates protein kinase D, which then phosphorylates and activates Vps34. In the second mechanism, DAPK directly phosphorylates Beclin 1, a necessary component of the Vps34 complex, thereby releasing it from its inhibitor, Bcl-2. In addition to these established pathways, we will discuss additional connections between DAPK and autophagy and potential mechanisms that still remain to be fully validated. These include myosin-dependent trafficking of Atg9-containing vesicles to the sites of autophagosome formation, membrane fusion events that contribute to expansion of the autophagosome membrane and maturation through the endocytic pathway, and trafficking to the lysosome on microtubules. Finally, we discuss how DAPK's participation in the autophagic process may be related to its function as a tumor suppressor protein, and its role in neurodegenerative diseases.

Journal ArticleDOI
TL;DR: The current literature of drugs that target wild-type and mutant p53 with a focus on small-molecule type compounds is reviewed and common means of drug discovery are discussed and group them according to their common mechanisms of action.
Abstract: Loss of function of p53, either through mutations in the gene or through mutations to other members of the pathway that inactivate wild-type p53, remains a critically important aspect of human cancer development. As such, p53 remains the most commonly mutated gene in human cancer. For these reasons, pharmacologic activation of the p53 pathway has been a highly sought after, yet unachieved goal in developmental therapeutics. Recently progress has been made not only in the discovery of small molecules that target wild-type and mutant p53, but also in the initiation and completion of the first in-human clinical trials for several of these drugs. Here, we review the current literature of drugs that target wild-type and mutant p53 with a focus on small-molecule type compounds. We discuss common means of drug discovery and group them according to their common mechanisms of action. Lastly, we review the current status of the various drugs in the development process and identify newer areas of p53 tumor biology that may prove therapeutically useful.

Journal ArticleDOI
TL;DR: Investigation of the roles of miR-15b in hypoxia/reoxygenation (H/R)-induced apoptosis of cardiomyocytes found that it is possible that the upstream regulator of a mitochondrial signaling pathway for H/R induced apoptosis is possible.
Abstract: Myocardial ischemia reperfusion (I/R) can induce altered expression of microRNAs (miRNAs). The miRNAs—miR-15a, miR-15b and miR-16 have been shown to play a role in apoptosis, although not in cardiac-related models. We investigated the roles of miR-15b in hypoxia/reoxygenation (H/R)-induced apoptosis of cardiomyocytes. Quantitative real time polymerase chain reaction results showed that the expression of miR-15a and miR-15b were up-regulated in Sprague–Dawley rat hearts subjected to I/R. Expression levels of miR-15b increased more than four fold above basal levels. Similar results were obtained for cardiomyocytes exposed to H/R. Recombinant adenoviral vectors were generated to explore the functional role of miR-15b in cultured cardiomyocytes exposed to H/R. Overexpression of miR-15b enhanced cell apoptosis and the loss of mitochondrial membrane potential, as determined by flow cytometric analysis. Conversely, down-regulated expression was cytoprotective. The effects of miR-15b can by mimicked by Bcl-2 short-interfering RNAs. The inhibition of miR-15b increased expression levels of the Bcl-2 protein without affecting Bcl-2 mRNA levels, suppressed the release of mitochondrial cytochrome c to the cytosol and decreased the activities of caspase-3 and 9. It is possible that miR-15b is the upstream regulator of a mitochondrial signaling pathway for H/R induced apoptosis.

Journal ArticleDOI
TL;DR: LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis.
Abstract: Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis.

Journal ArticleDOI
TL;DR: New functions of p53 are described in promoting cell division in apoptosis-induced proliferation, enhancing fitness and proliferation of the winner cell in cell competition and coordinating growth at the organ and organismal level in the presence of stress.
Abstract: The canonical role of p53 in preserving genome integrity and limiting carcinogenesis has been well established. In the presence of acute DNA-damage, oncogene deregulation and other forms of cellular stress, p53 orchestrates a myriad of pleiotropic processes to repair cellular damages and maintain homeostasis. Beside these well-studied functions of p53, recent studies in Drosophila have unraveled intriguing roles of Dmp53 in promoting cell division in apoptosis-induced proliferation, enhancing fitness and proliferation of the winner cell in cell competition and coordinating growth at the organ and organismal level in the presence of stress. In this review, we describe these new functions of Dmp53 and discuss their relevance in the context of carcinogenesis.

Journal ArticleDOI
TL;DR: RV remarkably prevented SNP-induced ROS production and apoptosis as well as cytoskeletal remodeling, but did not prevent SNP- induced NO production.
Abstract: This study aims to investigate the mechanism by which resveratrol (RV) prevents sodium nitroprusside (SNP)-induced chondrocyte apoptosis, which is a characteristic feature of osteoarthritis (OA). Rabbit articular chondrocytes were pre-incubated with 100 μM RV for 18 h before 1.5 mM SNP co-treatment for 6 h. Cell viability was evaluated by CCK-8. Annexin V/PI double staining and Hoechst 33258 staining were used to determine the fashion of SNP-induced chondrocytes death. Mitochondrial membrane potential (ΔΨm) was measured by using flow cytometry (FCM) with TMRM and Rhodamine 123 staining. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were confirmed by FCM analysis with DCFH-DA and DAF-FM DA staining. Cytoskeleton proteins of chondrocytes co-stained with Actin-Trakcer Green and Tubulin-Trakcer Red were validated by confocal microscopy. SNP induced time- and dose-dependent chondrocytes apoptosis with decline of ΔΨm, activation of caspases as well as cytoskeletal remodeling. SNP induced a significant induction of both ROS and NO. RV remarkably prevented SNP-induced ROS production and apoptosis as well as cytoskeletal remodeling, but did not prevent SNP-induced NO production. Pretreatment with NO scavengers did not significantly prevent SNP-induced apoptosis and cytoskeletal remodeling. SNP induces NO-independent ROS production which dominates rabbit articular chondrocyte apoptosis, and RV protects chondrocytes against SNP-induced apoptosis via scavenging ROS instead of NO.

Journal ArticleDOI
TL;DR: Results showed that Elatoside C (25 μM) treatment provided significant protection against H/R-induced cell death, as evidenced by improved cell viability, maintained mitochondrial membrane potential, diminished mitochondrial ROS, and reduced apoptotic cardiomyocytes.
Abstract: Endoplasmic reticulum (ER) stress-induced apoptosis has been suggested to contribute to myocardial ischemia–reperfusion (I/R) injury. Elatoside C is one of the major triterpenoid compounds isolated from Aralia elata that is known to be cardioprotective. However, its effects on I/R injury to cardiac myocytes have not been clarified. This study aimed to investigate the possible protective effect of Elatoside C against hypoxia/reoxygenation (H/R)-induced H9c2 cardiomyocyte injury and its underlying mechanisms. H9c2 cardiomyocytes were subjected to H/R in the presence of Elatoside C. Our results showed that Elatoside C (25 μM) treatment provided significant protection against H/R-induced cell death, as evidenced by improved cell viability, maintained mitochondrial membrane potential, diminished mitochondrial ROS, and reduced apoptotic cardiomyocytes (P < 0.05). These changes were associated with the inhibition of ER stress-associated apoptosis markers (GRP78, CHOP, Caspase-12 and JNK), as well as the increased phosphorylation of STAT3 and an increased Bcl2/Bax ratio. Moreover, these effects of Elatoside C were prevented by the STAT3 inhibitor Stattic. Taken together, these results suggested that Elatoside C can alleviate H/R-induced cardiomyocyte apoptosis most likely by activating the STAT3 pathways and reducing ER stress-associated apoptosis.

Journal ArticleDOI
Xin Lv1, Xiao-jun Pu1, Gongwei Qin1, Tong Zhu1, Hong-Hui Lin1 
TL;DR: The roles that autophagy-related genes (ATGs) family play in the lifecycle of the Arabidopsis are proved to be similar to that in mammal and could develop sophisticated mechanisms to survive when plants are suffering unfavorable environments.
Abstract: Autophagy is a dynamic process that involves the recycling process of the degradation of intracellular materials. Over the past decade, our molecular and physiological understanding of plant autophagy has greatly been increased. Most essential autophagic machineries are conserved from yeast to plants. The roles that autophagy-related genes (ATGs) family play in the lifecycle of the Arabidopsis are proved to be similar to that in mammal. Autophagy is activated during certain stages of development, senescence or in response to starvation, or environmental stress in Arabidopsis. In the progression of autophagy, ATGs act as central signaling regulators and could develop sophisticated mechanisms to survive when plants are suffering unfavorable environments. It will facilitate further understanding of the molecular mechanisms of autophagy in plant. In this review, we will discuss recent advances in our understanding of autophagy in Arabidopsis, areas of controversy, and highlight potential future directions in autophagy research.

Journal ArticleDOI
TL;DR: The components of the interactome network are presented to clarify both the mechanisms by which DAPK function is regulated, and by which it mediates its various cellular effects.
Abstract: DAP-kinase (DAPK) is a Ca2+/calmodulin regulated Ser/Thr kinase that activates a diverse range of cellular activities. It is subject to multiple layers of regulation involving both intramolecular signaling, and interactions with additional proteins, including other kinases and phosphatases. Its protein stability is modulated by at least three distinct ubiquitin-dependent systems. Like many kinases, DAPK participates in several signaling cascades, by phosphorylating additional kinases such as ZIP-kinase and protein kinase D (PKD), or Pin1, a phospho-directed peptidyl-prolyl isomerase that regulates the function of many phosphorylated proteins. Other substrate targets have more direct cellular effects; for example, phosphorylation of the myosin II regulatory chain and tropomyosin mediate some of DAPK’s cytoskeletal functions, including membrane blebbing during cell death and cell motility. DAPK induces distinct death pathways of apoptosis, autophagy and programmed necrosis. Among the substrates implicated in these processes, phosphorylation of PKD, Beclin 1, and the NMDA receptor has been reported. Interestingly, not all cellular effects are mediated by DAPK’s catalytic activity. For example, by virtue of protein–protein interactions alone, DAPK activates pyruvate kinase isoform M2, the microtubule affinity regulating kinases and inflammasome protein NLRP3, to promote glycolysis, influence microtubule dynamics, and enhance interleukin-1β production, respectively. In addition, a number of other substrates and interacting proteins have been identified, the physiological significance of which has not yet been established. All of these substrates, effectors and regulators together comprise the DAPK interactome. By presenting the components of the interactome network, this review will clarify both the mechanisms by which DAPK function is regulated, and by which it mediates its various cellular effects.

Journal ArticleDOI
TL;DR: Investigation of the molecular mechanisms underlying the anti-cancer effects of LicA in HepG2 human hepatocellular carcinoma cells suggest that induction of ER stress via a PLCγ1, Ca2+-, and ROS-dependent pathway may be an important mechanism by which LicA induces apoptosis.
Abstract: Licochalcone A (LicA), an estrogenic flavonoid, induces apoptosis in multiple types of cancer cells. In this study, the molecular mechanisms underlying the anti-cancer effects of LicA were investigated in HepG2 human hepatocellular carcinoma cells. LicA induced apoptotic cell death, activation of caspase-4, -9, and -3, and expression of endoplasmic reticulum (ER) stress-associated proteins, including C/EBP homologous protein (CHOP). Inhibition of ER stress by CHOP knockdown or treatment with the ER stress inhibitors, salubrinal and 4-phenylbutyric acid, reduced LicA-induced cell death. LicA also induced reactive oxygen species (ROS) accumulation and the anti-oxidant N-acetylcysteine reduced LicA-induced cell death and CHOP expression. In addition, LicA increased the levels of cytosolic Ca2+, which was blocked by 2-aminoethoxydiphenyl borate (an antagonist of inositol 1,4,5-trisphosphate receptor) and BAPTA-AM (an intracellular Ca2+ chelator). 2-Aminoethoxydiphenyl borate and BAPTA-AM inhibited LicA-induced cell death. Interestingly, LicA induced phosphorylation of phospholipase Cγ1 (PLCγ1) and inhibition of PLCγ1 reduced cell death and ER stress. Moreover, the multi-targeted receptor tyrosine kinase inhibitors, sorafenib and sunitinib, reduced LicA-induced cell death, ER stress, and cytosolic Ca2+ and ROS accumulation. Finally, LicA induced phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and c-Met receptor and inhibition of both receptors by co-transfection with VEGFR2 and c-Met siRNAs reversed LicA-induced cell death, Ca2+ increase, and CHOP expression. Taken together, these findings suggest that induction of ER stress via a PLCγ1-, Ca2+-, and ROS-dependent pathway may be an important mechanism by which LicA induces apoptosis in HepG2 hepatocellular carcinoma cells.

Journal ArticleDOI
TL;DR: The results indicate that miR-29a decreases cholestatic liver injury and fibrosis after BDL, at least partially, by modulating the extrinsic rather than intrinsic pathway of apoptosis.
Abstract: Recent studies have shown that microRNA-29 (miR-29) is significantly decreased in liver fibrosis, as demonstrated in human liver cirrhosis, and that its downregulation influences the activation of hepatic stellate cells. In addition, both cleaved caspase-3 production and apoptosis play a role in cholestatic liver injury. However, it is unknown if miR-29 is effective in modulating the extent of injury. We employed miR-29a transgenic mice (miR-29aTg mice) and wild-type (WT) littermates to clarify the role of miR-29 in hepatic injury and fibrogenesis, using the bile duct-ligation (BDL) mouse model. After BDL, all three members of the miR-29 family were significantly downregulated in the livers of WT mice, and miR-29b and miR-29c were significantly downregulated in the livers of the miR-29aTg mice. Liver function, as measured by alanine transaminase and aspartate transaminase activity, was significantly improved in the miR-29aTg mice than in the WT littermates, following 1 week of obstructive jaundice. In addition, overexpression of miR-29a was associated with a significant downregulation of the expression of collagen-1α1, collagen-4α1, phospho-FADD, cleaved caspase-8, cleaved caspase-3, Bax, Bcl-2, PARP, and nuclear factor-κB, as well as an upregulation of phospho-AKT expression. In addition, there were significantly fewer TUNEL-positive liver cells in the miR-29aTg group than in the WT littermates after BDL. Our results indicate that miR-29a decreases cholestatic liver injury and fibrosis after BDL, at least partially, by modulating the extrinsic rather than intrinsic pathway of apoptosis.